Skip to main content

Measure neural network device specific metrics (latency, flops, etc.)

Project description

torchprof

PyPI version

A minimal dependency library for layer-by-layer profiling of Pytorch models.

All metrics are derived using the PyTorch autograd profiler.

Quickstart

pip install torchprof

import torch
import torchvision
import torchprof

model = torchvision.models.alexnet(pretrained=False).cuda()
x = torch.rand([1, 3, 224, 224]).cuda()

with torchprof.Profile(model, use_cuda=True) as prof:
    model(x)

print(prof.display(show_events=False)) # equivalent to `print(prof)` and `print(prof.display())`
Module         | Self CPU total | CPU total | CUDA total | Occurrences
---------------|----------------|-----------|------------|------------
AlexNet        |                |           |            |
├── features   |                |           |            |
│├── 0         |        1.671ms |   6.589ms |    6.701ms |           1
│├── 1         |       62.430us |  62.430us |   63.264us |           1
│├── 2         |       62.909us | 109.948us |  112.640us |           1
│├── 3         |      225.389us | 858.376us |    1.814ms |           1
│├── 4         |       18.999us |  18.999us |   19.456us |           1
│├── 5         |       29.560us |  52.720us |   54.272us |           1
│├── 6         |      136.959us | 511.216us |  707.360us |           1
│├── 7         |       18.480us |  18.480us |   18.624us |           1
│├── 8         |       84.380us | 300.700us |  590.688us |           1
│├── 9         |       18.249us |  18.249us |   17.632us |           1
│├── 10        |       81.289us | 289.946us |  470.016us |           1
│├── 11        |       17.850us |  17.850us |   18.432us |           1
│└── 12        |       29.350us |  52.260us |   52.288us |           1
├── avgpool    |       41.840us |  70.840us |   76.832us |           1
└── classifier |                |           |            |
 ├── 0         |       66.400us | 122.110us |  125.920us |           1
 ├── 1         |      293.658us | 293.658us |  664.704us |           1
 ├── 2         |       17.600us |  17.600us |   18.432us |           1
 ├── 3         |       27.920us |  49.030us |   51.168us |           1
 ├── 4         |       40.590us |  40.590us |  208.672us |           1
 ├── 5         |       17.570us |  17.570us |   18.432us |           1
 └── 6         |       40.489us |  40.489us |   81.920us |           1

To see the low level operations that occur within each layer, print the contents of prof.display(show_events=True).

Module                        | Self CPU total | CPU total | CUDA total | Occurrences
------------------------------|----------------|-----------|------------|------------
AlexNet                       |                |           |            |
├── features                  |                |           |            |
│├── 0                        |                |           |            |
││├── conv2d                  |       13.370us |   1.671ms |    1.698ms |           1
││├── convolution             |       12.730us |   1.658ms |    1.685ms |           1
││├── _convolution            |       30.660us |   1.645ms |    1.673ms |           1
││├── contiguous              |        6.970us |   6.970us |    7.136us |           1
││└── cudnn_convolution       |        1.608ms |   1.608ms |    1.638ms |           1
│├── 1                        |                |           |            |
││└── relu_                   |       62.430us |  62.430us |   63.264us |           1
│├── 2                        |                |           |            |
││├── max_pool2d              |       15.870us |  62.909us |   63.488us |           1
││└── max_pool2d_with_indices |       47.039us |  47.039us |   49.152us |           1
...

The original Pytorch EventList can be returned by calling raw() on the profile instance.

trace, event_lists_dict = prof.raw()
print(trace[2])
# Trace(path=('AlexNet', 'features', '0'), leaf=True, module=Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)))

print(event_lists_dict[trace[2].path][0])
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  -----------------------------------
Name                   Self CPU total %  Self CPU total   CPU total %      CPU total        CPU time avg     CUDA total %     CUDA total       CUDA time avg    Number of Calls  Input Shapes
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  -----------------------------------
conv2d                 0.80%            13.370us         100.00%          1.671ms          1.671ms          25.34%           1.698ms          1.698ms          1                []
convolution            0.76%            12.730us         99.20%           1.658ms          1.658ms          25.15%           1.685ms          1.685ms          1                []
_convolution           1.83%            30.660us         98.44%           1.645ms          1.645ms          24.97%           1.673ms          1.673ms          1                []
contiguous             0.42%            6.970us          0.42%            6.970us          6.970us          0.11%            7.136us          7.136us          1                []
cudnn_convolution      96.19%           1.608ms          96.19%           1.608ms          1.608ms          24.44%           1.638ms          1.638ms          1                []
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  -----------------------------------
Self CPU time total: 1.671ms
CUDA time total: 6.701ms

Layers can be selected for individually using the optional paths kwarg. Profiling is ignored for all other layers.

model = torchvision.models.alexnet(pretrained=False)
x = torch.rand([1, 3, 224, 224])

# Layer does not have to be a leaf layer
paths = [("AlexNet", "features", "3"), ("AlexNet", "classifier")]

with torchprof.Profile(model, paths=paths) as prof:
    model(x)

print(prof)
Module         | Self CPU total | CPU total | CUDA total | Occurrences
---------------|----------------|-----------|------------|------------
AlexNet        |                |           |            |
├── features   |                |           |            |
│├── 0         |                |           |            |
│├── 1         |                |           |            |
│├── 2         |                |           |            |
│├── 3         |        3.189ms |  12.717ms |    0.000us |           1
│├── 4         |                |           |            |
│├── 5         |                |           |            |
│├── 6         |                |           |            |
│├── 7         |                |           |            |
│├── 8         |                |           |            |
│├── 9         |                |           |            |
│├── 10        |                |           |            |
│├── 11        |                |           |            |
│└── 12        |                |           |            |
├── avgpool    |                |           |            |
└── classifier |       13.403ms |  14.011ms |    0.000us |           1
 ├── 0         |                |           |            |
 ├── 1         |                |           |            |
 ├── 2         |                |           |            |
 ├── 3         |                |           |            |
 ├── 4         |                |           |            |
 ├── 5         |                |           |            |
 └── 6         |                |           |            |

LICENSE

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchprof-1.1.0.tar.gz (8.5 kB view details)

Uploaded Source

Built Distribution

torchprof-1.1.0-py3-none-any.whl (8.4 kB view details)

Uploaded Python 3

File details

Details for the file torchprof-1.1.0.tar.gz.

File metadata

  • Download URL: torchprof-1.1.0.tar.gz
  • Upload date:
  • Size: 8.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.3

File hashes

Hashes for torchprof-1.1.0.tar.gz
Algorithm Hash digest
SHA256 3128440776a0501fc265608adb330c7e8f535924f32b42122efc6c05a21ce7c2
MD5 c4903dca5368c37860beaa1f030c73d8
BLAKE2b-256 a9faf3eac84565c614d0db00f2db0f04b24c5ae27ee96948c9dafed98fca32ec

See more details on using hashes here.

File details

Details for the file torchprof-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: torchprof-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 8.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.3

File hashes

Hashes for torchprof-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c87369f127f36ddb71bbb9c7014af8e02bf9f5073d164d774253975917285694
MD5 40a862b5fbeeb4f2e59f04ebf6b08c97
BLAKE2b-256 db0825b6821a390cd70bbce986c503ede19ca3aff47f1a581738f37bd710ce51

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page