Skip to main content

Measure neural network device specific metrics (latency, flops, etc.)

Project description

torchprof

PyPI version

A minimal dependency library for layer-by-layer profiling of Pytorch models.

All metrics are derived using the PyTorch autograd profiler.

Quickstart

pip install torchprof

import torch
import torchvision
import torchprof

model = torchvision.models.alexnet(pretrained=False).cuda()
x = torch.rand([1, 3, 224, 224]).cuda()

with torchprof.Profile(model, use_cuda=True) as prof:
    model(x)

print(prof.display(show_events=False)) # equivalent to `print(prof)` and `print(prof.display())`
Module         | Self CPU total | CPU total | CUDA total | Occurrences
---------------|----------------|-----------|------------|------------
AlexNet        |                |           |            |
├── features   |                |           |            |
│├── 0         |        1.671ms |   6.589ms |    6.701ms |           1
│├── 1         |       62.430us |  62.430us |   63.264us |           1
│├── 2         |       62.909us | 109.948us |  112.640us |           1
│├── 3         |      225.389us | 858.376us |    1.814ms |           1
│├── 4         |       18.999us |  18.999us |   19.456us |           1
│├── 5         |       29.560us |  52.720us |   54.272us |           1
│├── 6         |      136.959us | 511.216us |  707.360us |           1
│├── 7         |       18.480us |  18.480us |   18.624us |           1
│├── 8         |       84.380us | 300.700us |  590.688us |           1
│├── 9         |       18.249us |  18.249us |   17.632us |           1
│├── 10        |       81.289us | 289.946us |  470.016us |           1
│├── 11        |       17.850us |  17.850us |   18.432us |           1
│└── 12        |       29.350us |  52.260us |   52.288us |           1
├── avgpool    |       41.840us |  70.840us |   76.832us |           1
└── classifier |                |           |            |
 ├── 0         |       66.400us | 122.110us |  125.920us |           1
 ├── 1         |      293.658us | 293.658us |  664.704us |           1
 ├── 2         |       17.600us |  17.600us |   18.432us |           1
 ├── 3         |       27.920us |  49.030us |   51.168us |           1
 ├── 4         |       40.590us |  40.590us |  208.672us |           1
 ├── 5         |       17.570us |  17.570us |   18.432us |           1
 └── 6         |       40.489us |  40.489us |   81.920us |           1

To see the low level operations that occur within each layer, print the contents of prof.display(show_events=True).

Module                        | Self CPU total | CPU total | CUDA total | Occurrences
------------------------------|----------------|-----------|------------|------------
AlexNet                       |                |           |            |
├── features                  |                |           |            |
│├── 0                        |                |           |            |
││├── conv2d                  |       13.370us |   1.671ms |    1.698ms |           1
││├── convolution             |       12.730us |   1.658ms |    1.685ms |           1
││├── _convolution            |       30.660us |   1.645ms |    1.673ms |           1
││├── contiguous              |        6.970us |   6.970us |    7.136us |           1
││└── cudnn_convolution       |        1.608ms |   1.608ms |    1.638ms |           1
│├── 1                        |                |           |            |
││└── relu_                   |       62.430us |  62.430us |   63.264us |           1
│├── 2                        |                |           |            |
││├── max_pool2d              |       15.870us |  62.909us |   63.488us |           1
││└── max_pool2d_with_indices |       47.039us |  47.039us |   49.152us |           1
...

The original Pytorch EventList can be returned by calling raw() on the profile instance.

trace, event_lists_dict = prof.raw()
print(trace[2])
# Trace(path=('AlexNet', 'features', '0'), leaf=True, module=Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)))

print(event_lists_dict[trace[2].path][0])
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  -----------------------------------
Name                   Self CPU total %  Self CPU total   CPU total %      CPU total        CPU time avg     CUDA total %     CUDA total       CUDA time avg    Number of Calls  Input Shapes
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  -----------------------------------
conv2d                 0.80%            13.370us         100.00%          1.671ms          1.671ms          25.34%           1.698ms          1.698ms          1                []
convolution            0.76%            12.730us         99.20%           1.658ms          1.658ms          25.15%           1.685ms          1.685ms          1                []
_convolution           1.83%            30.660us         98.44%           1.645ms          1.645ms          24.97%           1.673ms          1.673ms          1                []
contiguous             0.42%            6.970us          0.42%            6.970us          6.970us          0.11%            7.136us          7.136us          1                []
cudnn_convolution      96.19%           1.608ms          96.19%           1.608ms          1.608ms          24.44%           1.638ms          1.638ms          1                []
---------------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  -----------------------------------
Self CPU time total: 1.671ms
CUDA time total: 6.701ms

Layers can be selected for individually using the optional paths kwarg. Profiling is ignored for all other layers.

model = torchvision.models.alexnet(pretrained=False)
x = torch.rand([1, 3, 224, 224])

# Layer does not have to be a leaf layer
paths = [("AlexNet", "features", "3"), ("AlexNet", "classifier")]

with torchprof.Profile(model, paths=paths) as prof:
    model(x)

print(prof)
Module         | Self CPU total | CPU total | CUDA total | Occurrences
---------------|----------------|-----------|------------|------------
AlexNet        |                |           |            |
├── features   |                |           |            |
│├── 0         |                |           |            |
│├── 1         |                |           |            |
│├── 2         |                |           |            |
│├── 3         |        3.189ms |  12.717ms |    0.000us |           1
│├── 4         |                |           |            |
│├── 5         |                |           |            |
│├── 6         |                |           |            |
│├── 7         |                |           |            |
│├── 8         |                |           |            |
│├── 9         |                |           |            |
│├── 10        |                |           |            |
│├── 11        |                |           |            |
│└── 12        |                |           |            |
├── avgpool    |                |           |            |
└── classifier |       13.403ms |  14.011ms |    0.000us |           1
 ├── 0         |                |           |            |
 ├── 1         |                |           |            |
 ├── 2         |                |           |            |
 ├── 3         |                |           |            |
 ├── 4         |                |           |            |
 ├── 5         |                |           |            |
 └── 6         |                |           |            |

Citation

If this software is useful to your research, I would greatly appreciate a citation in your work.

@misc{torchprof,
  author       = {Alexander William Wong}, 
  title        = {torchprof},
  howpublished = {github.com},
  month        = 4,
  year         = 2020,
  note         = {A minimal dependency library for layer-by-layer profiling of Pytorch models.}
}

LICENSE

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchprof-1.1.1.tar.gz (8.9 kB view details)

Uploaded Source

Built Distribution

torchprof-1.1.1-py3-none-any.whl (8.6 kB view details)

Uploaded Python 3

File details

Details for the file torchprof-1.1.1.tar.gz.

File metadata

  • Download URL: torchprof-1.1.1.tar.gz
  • Upload date:
  • Size: 8.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.3

File hashes

Hashes for torchprof-1.1.1.tar.gz
Algorithm Hash digest
SHA256 a42cc12a83c66da59c960cf72a3c7306b38cc0d111ae05be92b8c1ba6d761b58
MD5 90563ce388e353a8e6c8abe83f31d4b7
BLAKE2b-256 612ac0cbaf1edeaa39d1d31cf9cf4b8f5b16183f48e5885545ce0f6d9c44a203

See more details on using hashes here.

File details

Details for the file torchprof-1.1.1-py3-none-any.whl.

File metadata

  • Download URL: torchprof-1.1.1-py3-none-any.whl
  • Upload date:
  • Size: 8.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.3

File hashes

Hashes for torchprof-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 65b67301815a65341b8669f230d4962c9f62a80dc9151dcd0908b7383c5693b8
MD5 86ddc70f031a19f05eab74a19b660eba
BLAKE2b-256 cecfdaf7a49c33c7d5d70aa22fc80be9545cdfe3785409c4966f016da75b93e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page