Measure neural network device specific metrics (latency, flops, etc.)
Project description
torchprof
A minimal dependency library for layer-by-layer profiling of PyTorch models.
All metrics are derived using the PyTorch autograd profiler.
Quickstart
pip install torchprof
import torch
import torchvision
import torchprof
model = torchvision.models.alexnet(pretrained=False).cuda()
x = torch.rand([1, 3, 224, 224]).cuda()
# `profile_memory` was added in PyTorch 1.6, this will output a runtime warning if unsupported.
with torchprof.Profile(model, use_cuda=True, profile_memory=True) as prof:
model(x)
# equivalent to `print(prof)` and `print(prof.display())`
print(prof.display(show_events=False))
Module | Self CPU total | CPU total | Self CUDA total | CUDA total | Self CPU Mem | CPU Mem | Self CUDA Mem | CUDA Mem | Number of Calls
---------------|----------------|-----------|-----------------|------------|--------------|---------|---------------|-----------|----------------
AlexNet | | | | | | | | |
├── features | | | | | | | | |
│├── 0 | 1.831ms | 7.260ms | 1.830ms | 7.230ms | 0 b | 0 b | 3.71 Mb | 756.50 Kb | 1
│├── 1 | 46.768us | 68.950us | 46.976us | 70.528us | 0 b | 0 b | 0 b | 0 b | 1
│├── 2 | 80.361us | 166.213us | 79.872us | 149.696us | 0 b | 0 b | 1.60 Mb | 547.00 Kb | 1
│├── 3 | 277.412us | 1.205ms | 492.544us | 1.932ms | 0 b | 0 b | 2.68 Mb | 547.00 Kb | 1
│├── 4 | 28.274us | 40.156us | 27.872us | 41.184us | 0 b | 0 b | 0 b | 0 b | 1
│├── 5 | 57.138us | 124.176us | 56.512us | 109.536us | 0 b | 0 b | 1.11 Mb | 380.50 Kb | 1
│├── 6 | 173.517us | 674.434us | 210.880us | 809.824us | 0 b | 0 b | 8.27 Mb | 253.50 Kb | 1
│├── 7 | 27.382us | 38.754us | 27.648us | 39.936us | 0 b | 0 b | 0 b | 0 b | 1
│├── 8 | 144.863us | 556.345us | 207.872us | 798.368us | 0 b | 0 b | 10.20 Mb | 169.00 Kb | 1
│├── 9 | 27.552us | 39.224us | 26.752us | 39.072us | 0 b | 0 b | 0 b | 0 b | 1
│├── 10 | 138.752us | 531.703us | 173.056us | 661.568us | 0 b | 0 b | 7.08 Mb | 169.00 Kb | 1
│├── 11 | 27.743us | 39.515us | 27.648us | 39.936us | 0 b | 0 b | 0 b | 0 b | 1
│└── 12 | 60.333us | 133.099us | 59.392us | 116.768us | 0 b | 0 b | 324.00 Kb | 108.00 Kb | 1
├── avgpool | 55.655us | 110.770us | 57.344us | 107.456us | 0 b | 0 b | 108.00 Kb | 36.00 Kb | 1
└── classifier | | | | | | | | |
├── 0 | 77.746us | 165.089us | 77.696us | 144.064us | 0 b | 0 b | 171.00 Kb | 45.00 Kb | 1
├── 1 | 405.262us | 425.012us | 796.672us | 796.672us | 0 b | 0 b | 32.00 Kb | 16.00 Kb | 1
├── 2 | 29.455us | 42.329us | 29.472us | 42.976us | 0 b | 0 b | 0 b | 0 b | 1
├── 3 | 53.601us | 120.870us | 53.248us | 99.328us | 0 b | 0 b | 76.00 Kb | 20.00 Kb | 1
├── 4 | 63.981us | 79.811us | 232.448us | 232.448us | 0 b | 0 b | 32.00 Kb | 16.00 Kb | 1
├── 5 | 27.853us | 39.445us | 27.648us | 40.928us | 0 b | 0 b | 0 b | 0 b | 1
└── 6 | 61.656us | 76.714us | 96.256us | 96.256us | 0 b | 0 b | 8.00 Kb | 4.00 Kb | 1
To see the low level operations that occur within each layer, print the contents of prof.display(show_events=True)
.
Module | Self CPU total | CPU total | Self CUDA total | CUDA total | Self CPU Mem | CPU Mem | Self CUDA Mem | CUDA Mem | Number of Calls
------------------------------------|----------------|-----------|-----------------|------------|--------------|---------|---------------|-----------|----------------
AlexNet | | | | | | | | |
├── features | | | | | | | | |
│├── 0 | | | | | | | | |
││├── aten::conv2d | 15.779us | 1.831ms | 14.336us | 1.830ms | 0 b | 0 b | 756.50 Kb | 0 b | 1
││├── aten::convolution | 10.139us | 1.815ms | 8.512us | 1.816ms | 0 b | 0 b | 756.50 Kb | 0 b | 1
││├── aten::_convolution | 45.115us | 1.805ms | 36.288us | 1.808ms | 0 b | 0 b | 756.50 Kb | 0 b | 1
││├── aten::contiguous | 8.586us | 8.586us | 8.160us | 8.160us | 0 b | 0 b | 0 b | 0 b | 3
││├── aten::cudnn_convolution | 1.646ms | 1.682ms | 1.745ms | 1.749ms | 0 b | 0 b | 756.50 Kb | -18.00 Kb | 1
││├── aten::empty | 21.821us | 21.821us | 0.000us | 0.000us | 0 b | 0 b | 774.50 Kb | 774.50 Kb | 2
││├── aten::resize_ | 7.324us | 7.324us | 0.000us | 0.000us | 0 b | 0 b | 0 b | 0 b | 2
││├── aten::stride | 2.073us | 2.073us | 0.000us | 0.000us | 0 b | 0 b | 0 b | 0 b | 4
││├── aten::reshape | 5.701us | 17.603us | 1.056us | 1.056us | 0 b | 0 b | 0 b | 0 b | 1
││├── aten::view | 11.902us | 11.902us | 0.000us | 0.000us | 0 b | 0 b | 0 b | 0 b | 1
││└── aten::add_ | 56.837us | 56.837us | 17.408us | 17.408us | 0 b | 0 b | 0 b | 0 b | 1
│├── 1 | | | | | | | | |
││├── aten::relu_ | 24.586us | 46.768us | 23.424us | 46.976us | 0 b | 0 b | 0 b | 0 b | 1
││└── aten::threshold_ | 22.182us | 22.182us | 23.552us | 23.552us | 0 b | 0 b | 0 b | 0 b | 1
│├── 2 | | | | | | | | |
...
The original Pytorch EventList can be returned by calling raw()
on the profile instance.
trace, event_lists_dict = prof.raw()
print(trace[2])
# Trace(path=('AlexNet', 'features', '0'), leaf=True, module=Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)))
print(event_lists_dict[trace[2].path][0])
--------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self CUDA Self CUDA % CUDA total CUDA time avg CPU Mem Self CPU Mem CUDA Mem Self CUDA Mem # of Calls
--------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
aten::conv2d 0.86% 15.779us 100.00% 1.831ms 1.831ms 14.336us 0.78% 1.830ms 1.830ms 0 b 0 b 756.50 Kb 0 b 1
aten::convolution 0.55% 10.139us 99.14% 1.815ms 1.815ms 8.512us 0.47% 1.816ms 1.816ms 0 b 0 b 756.50 Kb 0 b 1
aten::_convolution 2.46% 45.115us 98.58% 1.805ms 1.805ms 36.288us 1.98% 1.808ms 1.808ms 0 b 0 b 756.50 Kb 0 b 1
aten::contiguous 0.20% 3.697us 0.20% 3.697us 3.697us 3.616us 0.20% 3.616us 3.616us 0 b 0 b 0 b 0 b 1
aten::cudnn_convolution 89.88% 1.646ms 91.85% 1.682ms 1.682ms 1.745ms 95.31% 1.749ms 1.749ms 0 b 0 b 756.50 Kb -18.00 Kb 1
aten::empty 0.67% 12.313us 0.67% 12.313us 12.313us 0.000us 0.00% 0.000us 0.000us 0 b 0 b 756.50 Kb 756.50 Kb 1
aten::contiguous 0.14% 2.575us 0.14% 2.575us 2.575us 2.464us 0.13% 2.464us 2.464us 0 b 0 b 0 b 0 b 1
aten::resize_ 0.37% 6.843us 0.37% 6.843us 6.843us 0.000us 0.00% 0.000us 0.000us 0 b 0 b 0 b 0 b 1
aten::contiguous 0.13% 2.314us 0.13% 2.314us 2.314us 2.080us 0.11% 2.080us 2.080us 0 b 0 b 0 b 0 b 1
aten::resize_ 0.03% 0.481us 0.03% 0.481us 0.481us 0.000us 0.00% 0.000us 0.000us 0 b 0 b 0 b 0 b 1
aten::stride 0.07% 1.203us 0.07% 1.203us 1.203us 0.000us 0.00% 0.000us 0.000us 0 b 0 b 0 b 0 b 1
aten::stride 0.02% 0.300us 0.02% 0.300us 0.300us 0.000us 0.00% 0.000us 0.000us 0 b 0 b 0 b 0 b 1
aten::stride 0.02% 0.290us 0.02% 0.290us 0.290us 0.000us 0.00% 0.000us 0.000us 0 b 0 b 0 b 0 b 1
aten::stride 0.02% 0.280us 0.02% 0.280us 0.280us 0.000us 0.00% 0.000us 0.000us 0 b 0 b 0 b 0 b 1
aten::empty 0.52% 9.508us 0.52% 9.508us 9.508us 0.000us 0.00% 0.000us 0.000us 0 b 0 b 18.00 Kb 18.00 Kb 1
aten::reshape 0.31% 5.701us 0.96% 17.603us 17.603us 1.056us 0.06% 1.056us 1.056us 0 b 0 b 0 b 0 b 1
aten::view 0.65% 11.902us 0.65% 11.902us 11.902us 0.000us 0.00% 0.000us 0.000us 0 b 0 b 0 b 0 b 1
aten::add_ 3.10% 56.837us 3.10% 56.837us 56.837us 17.408us 0.95% 17.408us 17.408us 0 b 0 b 0 b 0 b 1
--------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Self CPU time total: 1.831ms
CUDA time total: 1.830ms
Layers can be selected for individually using the optional paths
kwarg. Profiling is ignored for all other layers.
model = torchvision.models.alexnet(pretrained=False)
x = torch.rand([1, 3, 224, 224])
# Layer does not have to be a leaf layer
paths = [("AlexNet", "features", "3"), ("AlexNet", "classifier")]
with torchprof.Profile(model, paths=paths) as prof:
model(x)
print(prof)
Module | Self CPU total | CPU total | Number of Calls
---------------|----------------|-----------|----------------
AlexNet | | |
├── features | | |
│├── 0 | | |
│├── 1 | | |
│├── 2 | | |
│├── 3 | 2.079ms | 8.296ms | 1
│├── 4 | | |
│├── 5 | | |
│├── 6 | | |
│├── 7 | | |
│├── 8 | | |
│├── 9 | | |
│├── 10 | | |
│├── 11 | | |
│└── 12 | | |
├── avgpool | | |
└── classifier | 10.734ms | 11.282ms | 1
├── 0 | | |
├── 1 | | |
├── 2 | | |
├── 3 | | |
├── 4 | | |
├── 5 | | |
└── 6 | | |
Citation
If this software is useful to your research, I would greatly appreciate a citation in your work.
@misc{awwong1-torchprof,
title = {torchprof},
author = {Alexander William Wong},
month = 12,
year = 2020,
url = {https://github.com/awwong1/torchprof}
note = {https://github.com/awwong1/torchprof}
}
LICENSE
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file torchprof-1.3.1.tar.gz
.
File metadata
- Download URL: torchprof-1.3.1.tar.gz
- Upload date:
- Size: 12.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b09a9b8c422fe7719553e32e14d9c6c565ea456766236ce9ee8d0f8402525020 |
|
MD5 | 0336d0b760bd2c71b8c2cbb668d7b9ef |
|
BLAKE2b-256 | 3b9c5c7eabd433b4cc568e4bd8cb4f9897d8e293cf8255d7d914079c1a388f77 |
File details
Details for the file torchprof-1.3.1-py3-none-any.whl
.
File metadata
- Download URL: torchprof-1.3.1-py3-none-any.whl
- Upload date:
- Size: 11.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b594f13ab33c2d85bca3126c088f447087457756f5287a0290864187a4268a3d |
|
MD5 | d79168bc0bf91ab4dd530126f0deebf0 |
|
BLAKE2b-256 | ee38e55eec4f7a61d2b265c4ec9fe7eb713318d7559d30f3240dcd844c5ee30e |