Skip to main content

Measure neural network device specific metrics (latency, flops, etc.)

Project description

torchprof

PyPI version CircleCI

Attention! This library is deprecated due to the PyTorch 1.9 changes to the torch profiler. Please use the official profiler. Thank you!

A minimal dependency library for layer-by-layer profiling of PyTorch models.

All metrics are derived using the PyTorch autograd profiler.

Quickstart

pip install torchprof

import torch
import torchvision
import torchprof

model = torchvision.models.alexnet(pretrained=False).cuda()
x = torch.rand([1, 3, 224, 224]).cuda()

# `profile_memory` was added in PyTorch 1.6, this will output a runtime warning if unsupported.
with torchprof.Profile(model, use_cuda=True, profile_memory=True) as prof:
    model(x)

# equivalent to `print(prof)` and `print(prof.display())`
print(prof.display(show_events=False))
Module         | Self CPU total | CPU total | Self CUDA total | CUDA total | Self CPU Mem | CPU Mem | Self CUDA Mem | CUDA Mem  | Number of Calls
---------------|----------------|-----------|-----------------|------------|--------------|---------|---------------|-----------|----------------
AlexNet        |                |           |                 |            |              |         |               |           |
├── features   |                |           |                 |            |              |         |               |           |
│├── 0         | 1.832ms        | 7.264ms   | 1.831ms         | 7.235ms    | 0 b          | 0 b     | 756.50 Kb     | 3.71 Mb   | 1
│├── 1         | 51.858us       | 76.564us  | 51.296us        | 76.896us   | 0 b          | 0 b     | 0 b           | 0 b       | 1
│├── 2         | 75.993us       | 157.855us | 77.600us        | 145.184us  | 0 b          | 0 b     | 547.00 Kb     | 1.60 Mb   | 1
│├── 3         | 263.526us      | 1.142ms   | 489.472us       | 1.918ms    | 0 b          | 0 b     | 547.00 Kb     | 2.68 Mb   | 1
│├── 4         | 28.824us       | 41.197us  | 28.672us        | 43.008us   | 0 b          | 0 b     | 0 b           | 0 b       | 1
│├── 5         | 55.264us       | 120.016us | 55.200us        | 106.400us  | 0 b          | 0 b     | 380.50 Kb     | 1.11 Mb   | 1
│├── 6         | 175.591us      | 681.011us | 212.896us       | 818.080us  | 0 b          | 0 b     | 253.50 Kb     | 8.27 Mb   | 1
│├── 7         | 27.622us       | 39.494us  | 26.848us        | 39.296us   | 0 b          | 0 b     | 0 b           | 0 b       | 1
│├── 8         | 140.204us      | 537.162us | 204.832us       | 781.280us  | 0 b          | 0 b     | 169.00 Kb     | 10.20 Mb  | 1
│├── 9         | 27.532us       | 39.364us  | 26.816us        | 39.136us   | 0 b          | 0 b     | 0 b           | 0 b       | 1
│├── 10        | 138.621us      | 530.929us | 171.008us       | 650.432us  | 0 b          | 0 b     | 169.00 Kb     | 7.08 Mb   | 1
│├── 11        | 27.712us       | 39.645us  | 27.648us        | 39.936us   | 0 b          | 0 b     | 0 b           | 0 b       | 1
│└── 12        | 54.813us       | 118.823us | 55.296us        | 107.360us  | 0 b          | 0 b     | 108.00 Kb     | 324.00 Kb | 1
├── avgpool    | 58.329us       | 116.577us | 58.368us        | 111.584us  | 0 b          | 0 b     | 36.00 Kb      | 108.00 Kb | 1
└── classifier |                |           |                 |            |              |         |               |           |
 ├── 0         | 79.169us       | 167.495us | 78.848us        | 145.408us  | 0 b          | 0 b     | 45.00 Kb      | 171.00 Kb | 1
 ├── 1         | 404.070us      | 423.755us | 793.600us       | 793.600us  | 0 b          | 0 b     | 16.00 Kb      | 32.00 Kb  | 1
 ├── 2         | 30.097us       | 43.512us  | 29.792us        | 43.904us   | 0 b          | 0 b     | 0 b           | 0 b       | 1
 ├── 3         | 53.390us       | 121.042us | 53.248us        | 99.328us   | 0 b          | 0 b     | 20.00 Kb      | 76.00 Kb  | 1
 ├── 4         | 64.622us       | 79.902us  | 236.544us       | 236.544us  | 0 b          | 0 b     | 16.00 Kb      | 32.00 Kb  | 1
 ├── 5         | 28.854us       | 41.067us  | 28.544us        | 41.856us   | 0 b          | 0 b     | 0 b           | 0 b       | 1
 └── 6         | 62.258us       | 77.356us  | 95.232us        | 95.232us   | 0 b          | 0 b     | 4.00 Kb       | 8.00 Kb   | 1

To see the low level operations that occur within each layer, print the contents of prof.display(show_events=True).

Module                              | Self CPU total | CPU total | Self CUDA total | CUDA total | Self CPU Mem | CPU Mem | Self CUDA Mem | CUDA Mem  | Number of Calls
------------------------------------|----------------|-----------|-----------------|------------|--------------|---------|---------------|-----------|----------------
AlexNet                             |                |           |                 |            |              |         |               |           |
├── features                        |                |           |                 |            |              |         |               |           |
│├── 0                              |                |           |                 |            |              |         |               |           |
││├── aten::conv2d                  | 15.630us       | 1.832ms   | 14.176us        | 1.831ms    | 0 b          | 0 b     | 0 b           | 756.50 Kb | 1
││├── aten::convolution             | 9.768us        | 1.816ms   | 9.056us         | 1.817ms    | 0 b          | 0 b     | 0 b           | 756.50 Kb | 1
││├── aten::_convolution            | 45.005us       | 1.807ms   | 34.432us        | 1.808ms    | 0 b          | 0 b     | 0 b           | 756.50 Kb | 1
││├── aten::contiguous              | 8.738us        | 8.738us   | 8.480us         | 8.480us    | 0 b          | 0 b     | 0 b           | 0 b       | 3
││├── aten::cudnn_convolution       | 1.647ms        | 1.683ms   | 1.745ms         | 1.750ms    | 0 b          | 0 b     | -18.00 Kb     | 756.50 Kb | 1
││├── aten::empty                   | 21.249us       | 21.249us  | 0.000us         | 0.000us    | 0 b          | 0 b     | 774.50 Kb     | 774.50 Kb | 2
││├── aten::resize_                 | 7.635us        | 7.635us   | 0.000us         | 0.000us    | 0 b          | 0 b     | 0 b           | 0 b       | 2
││├── aten::stride                  | 1.902us        | 1.902us   | 0.000us         | 0.000us    | 0 b          | 0 b     | 0 b           | 0 b       | 4
││├── aten::reshape                 | 6.081us        | 17.833us  | 2.048us         | 2.048us    | 0 b          | 0 b     | 0 b           | 0 b       | 1
││├── aten::view                    | 11.752us       | 11.752us  | 0.000us         | 0.000us    | 0 b          | 0 b     | 0 b           | 0 b       | 1
││└── aten::add_                    | 57.248us       | 57.248us  | 18.432us        | 18.432us   | 0 b          | 0 b     | 0 b           | 0 b       | 1
│├── 1                              |                |           |                 |            |              |         |               |           |
││├── aten::relu_                   | 27.152us       | 51.858us  | 25.696us        | 51.296us   | 0 b          | 0 b     | 0 b           | 0 b       | 1
││└── aten::threshold_              | 24.706us       | 24.706us  | 25.600us        | 25.600us   | 0 b          | 0 b     | 0 b           | 0 b       | 1
│├── 2                              |                |           |                 |            |              |         |               |           |
...

The original Pytorch EventList can be returned by calling raw() on the profile instance.

trace, event_lists_dict = prof.raw()
print(trace[2])
# Trace(path=('AlexNet', 'features', '0'), leaf=True, module=Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)))

print(event_lists_dict[trace[2].path][0])
---------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
                       Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg     Self CUDA   Self CUDA %    CUDA total  CUDA time avg       CPU Mem  Self CPU Mem      CUDA Mem  Self CUDA Mem    # of Calls
---------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
               aten::conv2d         0.85%      15.630us       100.00%       1.832ms       1.832ms      14.176us         0.77%       1.831ms       1.831ms           0 b           0 b     756.50 Kb           0 b             1
          aten::convolution         0.53%       9.768us        99.15%       1.816ms       1.816ms       9.056us         0.49%       1.817ms       1.817ms           0 b           0 b     756.50 Kb           0 b             1
         aten::_convolution         2.46%      45.005us        98.61%       1.807ms       1.807ms      34.432us         1.88%       1.808ms       1.808ms           0 b           0 b     756.50 Kb           0 b             1
           aten::contiguous         0.20%       3.707us         0.20%       3.707us       3.707us       3.680us         0.20%       3.680us       3.680us           0 b           0 b           0 b           0 b             1
    aten::cudnn_convolution        89.90%       1.647ms        91.86%       1.683ms       1.683ms       1.745ms        95.27%       1.750ms       1.750ms           0 b           0 b     756.50 Kb     -18.00 Kb             1
                aten::empty         0.66%      12.102us         0.66%      12.102us      12.102us       0.000us         0.00%       0.000us       0.000us           0 b           0 b     756.50 Kb     756.50 Kb             1
           aten::contiguous         0.15%       2.706us         0.15%       2.706us       2.706us       2.560us         0.14%       2.560us       2.560us           0 b           0 b           0 b           0 b             1
              aten::resize_         0.39%       7.164us         0.39%       7.164us       7.164us       0.000us         0.00%       0.000us       0.000us           0 b           0 b           0 b           0 b             1
           aten::contiguous         0.13%       2.325us         0.13%       2.325us       2.325us       2.240us         0.12%       2.240us       2.240us           0 b           0 b           0 b           0 b             1
              aten::resize_         0.03%       0.471us         0.03%       0.471us       0.471us       0.000us         0.00%       0.000us       0.000us           0 b           0 b           0 b           0 b             1
               aten::stride         0.06%       1.092us         0.06%       1.092us       1.092us       0.000us         0.00%       0.000us       0.000us           0 b           0 b           0 b           0 b             1
               aten::stride         0.02%       0.280us         0.02%       0.280us       0.280us       0.000us         0.00%       0.000us       0.000us           0 b           0 b           0 b           0 b             1
               aten::stride         0.01%       0.270us         0.01%       0.270us       0.270us       0.000us         0.00%       0.000us       0.000us           0 b           0 b           0 b           0 b             1
               aten::stride         0.01%       0.260us         0.01%       0.260us       0.260us       0.000us         0.00%       0.000us       0.000us           0 b           0 b           0 b           0 b             1
                aten::empty         0.50%       9.147us         0.50%       9.147us       9.147us       0.000us         0.00%       0.000us       0.000us           0 b           0 b      18.00 Kb      18.00 Kb             1
              aten::reshape         0.33%       6.081us         0.97%      17.833us      17.833us       2.048us         0.11%       2.048us       2.048us           0 b           0 b           0 b           0 b             1
                 aten::view         0.64%      11.752us         0.64%      11.752us      11.752us       0.000us         0.00%       0.000us       0.000us           0 b           0 b           0 b           0 b             1
                 aten::add_         3.12%      57.248us         3.12%      57.248us      57.248us      18.432us         1.01%      18.432us      18.432us           0 b           0 b           0 b           0 b             1
---------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
Self CPU time total: 1.832ms
CUDA time total: 1.831ms

Layers can be selected for individually using the optional paths kwarg. Profiling is ignored for all other layers.

model = torchvision.models.alexnet(pretrained=False)
x = torch.rand([1, 3, 224, 224])

# Layer does not have to be a leaf layer
paths = [("AlexNet", "features", "3"), ("AlexNet", "classifier")]

with torchprof.Profile(model, paths=paths) as prof:
    model(x)

print(prof)
Module         | Self CPU total | CPU total | Number of Calls
---------------|----------------|-----------|----------------
AlexNet        |                |           |
├── features   |                |           |
│├── 0         |                |           |
│├── 1         |                |           |
│├── 2         |                |           |
│├── 3         | 3.162ms        | 12.626ms  | 1
│├── 4         |                |           |
│├── 5         |                |           |
│├── 6         |                |           |
│├── 7         |                |           |
│├── 8         |                |           |
│├── 9         |                |           |
│├── 10        |                |           |
│├── 11        |                |           |
│└── 12        |                |           |
├── avgpool    |                |           |
└── classifier | 11.398ms       | 12.130ms  | 1
 ├── 0         |                |           |
 ├── 1         |                |           |
 ├── 2         |                |           |
 ├── 3         |                |           |
 ├── 4         |                |           |
 ├── 5         |                |           |
 └── 6         |                |           |

Citation

If this software is useful to your research, I would greatly appreciate a citation in your work.

@misc{awwong1-torchprof,
  title        = {torchprof},
  author       = {Alexander William Wong},
  month        = 12,
  year         = 2020,
  url          = {https://github.com/awwong1/torchprof}
  note         = {https://github.com/awwong1/torchprof}
}

LICENSE

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchprof-1.4.0.tar.gz (13.4 kB view details)

Uploaded Source

Built Distribution

torchprof-1.4.0-py3-none-any.whl (11.4 kB view details)

Uploaded Python 3

File details

Details for the file torchprof-1.4.0.tar.gz.

File metadata

  • Download URL: torchprof-1.4.0.tar.gz
  • Upload date:
  • Size: 13.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2

File hashes

Hashes for torchprof-1.4.0.tar.gz
Algorithm Hash digest
SHA256 fad88a458f0d876bf391dd3dfaefd004e674a52f95c7884b9ecc50517cfd41b2
MD5 82677fb86ae73a257fee8d796104a2b7
BLAKE2b-256 c7e812242da108d5435d22a58416c8b98b45a4130ab9a4802b6f03287aa553aa

See more details on using hashes here.

File details

Details for the file torchprof-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: torchprof-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 11.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2

File hashes

Hashes for torchprof-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2fbc2d4a7004f3db02599e5d9788029fa02094832ebf14d02a9db50bc7aa5d15
MD5 ff10eb7688979aae84f91f20f4b7c85c
BLAKE2b-256 97dbf6469e51e99d1885336833227987d82160384b98f7cf56ab671ebbd9e346

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page