Skip to main content

None

Project description

torchquantum

TorchQuantum is a backtesting framework that integrates the structure of PyTorch and WorldQuant's Operator for efficient quantitative financial analysis.

Contents

Installation

for Unix:

cd /path/to/your/directory
git clone git@github.com:nymath/torchquantum.git
cd ./torchquantum

Before running examples, you should compile the cython code.

python setup.py build_ext --inplace

Now you can run examples

python ./examples/main.py

If you are not downloading the dataset, then you should

cd ./examples
mkdir largedata
cd ./largedata
wget https://github.com/nymath/torchquantum/releases/download/V0.1/Stocks.pkl.zip
unzip Stocks.pkl.zip
rm Stocks.pkl.zip
cd ../
cd ../

Example

You can easily create an alpha through torchquantum!

import torchqtm.op as op
import torchqtm.op.functional as F
class NeutralizePE(op.Fundamental):
    def __init__(self, env):
        super().__init__(env)
        self.lag = op.Parameter(5, required_optim=False, feasible_region=None)

    def forward(self):
        self.data = F.divide(1, self.env.PE)
        self.data = F.winsorize(self.data, 'std', 4)
        self.data = F.normalize(self.data)
        self.data = F.group_neutralize(self.data, self.env.Sector)
        self.data = F.regression_neut(self.data, self.env.MktVal)
        self.data = F.ts_mean(self.data, self.lag)
        return self.data
  • F is library that contains the operators defined by WorldQuant.
  • op.Fundamental implies the NeutralizePE belongs to fundamental alpha.
  • self.lag is the parameter of rolling mean, which can be optimized through grid search.

Features

  • High-speed backtesting framework (most of the operators are implemented through cython)
  • A revised gplearn library that is compatible with Alpha mining.
  • CNN and other state of the art models for mining alphas.
  • Event Driven backtesting framework is available.

Contribution

For more information, we refer to Documentation.

Join us

If you are interested in quantitative finance and are committed to devoting your life to alpha mining, you can contact me through WeChat at Ny_math.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchqtm-0.1.0.tar.gz (258.2 kB view details)

Uploaded Source

Built Distribution

torchqtm-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl (278.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file torchqtm-0.1.0.tar.gz.

File metadata

  • Download URL: torchqtm-0.1.0.tar.gz
  • Upload date:
  • Size: 258.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for torchqtm-0.1.0.tar.gz
Algorithm Hash digest
SHA256 4cbf9662ce53517069ded2454019506d39e97f0bd36f7fb62cf6d5f164f1e992
MD5 5736a67cb03067d67ddc61aaf2d5da00
BLAKE2b-256 85723f0d97e7d9a0e7ba06e1c95a6e38e4fabae9949a3b7617881d43218a90fe

See more details on using hashes here.

File details

Details for the file torchqtm-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for torchqtm-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 87af4e87dcf4346b410b16ca0775f3aa0a4c89aabefdf2fa5132e2cfdc5950a0
MD5 5a2f85509382465038da43da5ef6cab4
BLAKE2b-256 fcc3aa490cbf1cf100d2b304c720a35f4bd7e209c122a48b530d3afc87e68e50

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page