Skip to main content

Pytorch domain library for recommendation systems

Project description

TorchRec (Beta Release)

Docs

TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale recommender systems (RecSys). It allows authors to train models with large embedding tables sharded across many GPUs.

TorchRec contains:

  • Parallelism primitives that enable easy authoring of large, performant multi-device/multi-node models using hybrid data-parallelism/model-parallelism.
  • The TorchRec sharder can shard embedding tables with different sharding strategies including data-parallel, table-wise, row-wise, table-wise-row-wise, and column-wise sharding.
  • The TorchRec planner can automatically generate optimized sharding plans for models.
  • Pipelined training overlaps dataloading device transfer (copy to GPU), inter-device communications (input_dist), and computation (forward, backward) for increased performance.
  • Optimized kernels for RecSys powered by FBGEMM.
  • Quantization support for reduced precision training and inference.
  • Common modules for RecSys.
  • Production-proven model architectures for RecSys.
  • RecSys datasets (criteo click logs and movielens)
  • Examples of end-to-end training such the dlrm event prediction model trained on criteo click logs dataset.

Installation

Torchrec requires Python >= 3.7 and CUDA >= 11.0 (CUDA is highly recommended for performance but not required). The example below shows how to install with CUDA 11.3. This setup assumes you have conda installed.

Binaries

Experimental binary on Linux for Python 3.7, 3.8 and 3.9 can be installed via pip wheels

CUDA

conda install pytorch cudatoolkit=11.3 -c pytorch-nightly
pip install torchrec-nightly

CPU Only

conda install pytorch cpuonly -c pytorch-nightly
pip install torchrec-nightly-cpu

Colab example: introduction + install

See our colab notebook for an introduction to torchrec which includes runnable installation. - Tutorial Source - Open in Google Colab

From Source

We are currently iterating on the setup experience. For now, we provide manual instructions on how to build from source. The example below shows how to install with CUDA 11.3. This setup assumes you have conda installed.

  1. Install pytorch. See pytorch documentation

    conda install pytorch cudatoolkit=11.3 -c pytorch-nightly
    
  2. Install Requirements

    pip install -r requirements.txt
    
  3. Next, install FBGEMM_GPU from source (included in third_party folder of torchrec) by following the directions here. Installing fbgemm GPU is optional, but using FBGEMM w/ CUDA will be much faster. For CUDA 11.3 and SM80 (Ampere) architecture, the following instructions can be used:

    export CUB_DIR=/usr/local/cuda-11.3/include/cub
    export CUDA_BIN_PATH=/usr/local/cuda-11.3/
    export CUDACXX=/usr/local/cuda-11.3/bin/nvcc
    python setup.py install -DTORCH_CUDA_ARCH_LIST="7.0;8.0"
    

    The last line of the above code block (python setup.py install...) which manually installs fbgemm_gpu can be skipped if you do not need to build fbgemm_gpu with custom build-related flags. Skip to the next step if that is the case.

  4. Download and install TorchRec.

    git clone --recursive https://github.com/facebookresearch/torchrec
    
    # cd to the directory where torchrec's setup.py is located. Then run one of the below:
    cd torchrec
    python setup.py install develop --skip_fbgemm  # If you manually installed fbgemm_gpu in the previous step.
    python setup.py install develop                # Otherwise. This will run the fbgemm_gpu install step for you behind the scenes.
    python setup.py install develop --cpu_only     # For a CPU only installation of FBGEMM
    
  5. Test the installation.

    torchx run -s local_cwd --script test_installation.py
    

    See TorchX for more information on launching distributed and remote jobs.

  6. If you want to run a more complex example, please take a look at the torchrec DLRM example.

License

TorchRec is BSD licensed, as found in the LICENSE file.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchrec_nightly_cpu-2022.3.22-py39-none-any.whl (2.6 MB view details)

Uploaded Python 3.9

torchrec_nightly_cpu-2022.3.22-py38-none-any.whl (2.6 MB view details)

Uploaded Python 3.8

torchrec_nightly_cpu-2022.3.22-py37-none-any.whl (2.6 MB view details)

Uploaded Python 3.7

File details

Details for the file torchrec_nightly_cpu-2022.3.22-py39-none-any.whl.

File metadata

  • Download URL: torchrec_nightly_cpu-2022.3.22-py39-none-any.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: Python 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for torchrec_nightly_cpu-2022.3.22-py39-none-any.whl
Algorithm Hash digest
SHA256 07c98fb4e929cb44afe23b7caae4044e2cd0b60e9ddfb793a6b24ca1a3f9019a
MD5 7028432cb0e439843b90a42ad5970e04
BLAKE2b-256 1476a6738f34a7f4c2894e7ddb7a25b46748f157386dda62d39adf201231fe69

See more details on using hashes here.

File details

Details for the file torchrec_nightly_cpu-2022.3.22-py38-none-any.whl.

File metadata

  • Download URL: torchrec_nightly_cpu-2022.3.22-py38-none-any.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for torchrec_nightly_cpu-2022.3.22-py38-none-any.whl
Algorithm Hash digest
SHA256 f22591edaee9b8986a3c75a09e7997c6ab09f98f28edc14c76d3f3a4bc28d6f5
MD5 8f2b25371fca322c67560c3cd92a5605
BLAKE2b-256 9b31b3b7b12c6aa72508688a3b2a274c997006bde80929f8e215651bb3e30b89

See more details on using hashes here.

File details

Details for the file torchrec_nightly_cpu-2022.3.22-py37-none-any.whl.

File metadata

  • Download URL: torchrec_nightly_cpu-2022.3.22-py37-none-any.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: Python 3.7
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.11

File hashes

Hashes for torchrec_nightly_cpu-2022.3.22-py37-none-any.whl
Algorithm Hash digest
SHA256 703113f82d42160606d1194e7cf180afaf5b7fc4d7102f43b896a9fc91934d79
MD5 1b67bf7e2f6a72da169e0d1cd9d7f5db
BLAKE2b-256 4157a2c24084f841ed625e4684f0c16894ac84219cf4813a809ee0e5b721ba66

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page