Skip to main content

No project description provided

Project description

Unit-tests Documentation Benchmarks codecov Twitter Follow Python version GitHub license pypi version pypi nightly version Downloads Downloads Discord Shield

TorchRL

Documentation | TensorDict | Features | Examples, tutorials and demos | Citation | Installation | Asking a question | Contributing

TorchRL is an open-source Reinforcement Learning (RL) library for PyTorch.

Key features

  • ���� Python-first: Designed with Python as the primary language for ease of use and flexibility
  • ������ Efficient: Optimized for performance to support demanding RL research applications
  • ���� Modular, customizable, extensible: Highly modular architecture allows for easy swapping, transformation, or creation of new components
  • ���� Documented: Thorough documentation ensures that users can quickly understand and utilize the library
  • ��� Tested: Rigorously tested to ensure reliability and stability
  • ������ Reusable functionals: Provides a set of highly reusable functions for cost functions, returns, and data processing

Design Principles

  • ���� Aligns with PyTorch ecosystem: Follows the structure and conventions of popular PyTorch libraries (e.g., dataset pillar, transforms, models, data utilities)
  • ��� Minimal dependencies: Only requires Python standard library, NumPy, and PyTorch; optional dependencies for common environment libraries (e.g., OpenAI Gym) and datasets (D4RL, OpenX...)

Read the full paper for a more curated description of the library.

Getting started

Check our Getting Started tutorials for quickly ramp up with the basic features of the library!

Documentation and knowledge base

The TorchRL documentation can be found here. It contains tutorials and the API reference.

TorchRL also provides a RL knowledge base to help you debug your code, or simply learn the basics of RL. Check it out here.

We have some introductory videos for you to get to know the library better, check them out:

Spotlight publications

TorchRL being domain-agnostic, you can use it across many different fields. Here are a few examples:

  • ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery
  • BenchMARL: Benchmarking Multi-Agent Reinforcement Learning
  • BricksRL: A Platform for Democratizing Robotics and Reinforcement Learning Research and Education with LEGO
  • OmniDrones: An Efficient and Flexible Platform for Reinforcement Learning in Drone Control
  • RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark
  • Robohive: A unified framework for robot learning

Writing simplified and portable RL codebase with TensorDict

RL algorithms are very heterogeneous, and it can be hard to recycle a codebase across settings (e.g. from online to offline, from state-based to pixel-based learning). TorchRL solves this problem through TensorDict, a convenient data structure(1) that can be used to streamline one's RL codebase. With this tool, one can write a complete PPO training script in less than 100 lines of code!

Code
import torch
from tensordict.nn import TensorDictModule
from tensordict.nn.distributions import NormalParamExtractor
from torch import nn

from torchrl.collectors import SyncDataCollector
from torchrl.data.replay_buffers import TensorDictReplayBuffer, \
  LazyTensorStorage, SamplerWithoutReplacement
from torchrl.envs.libs.gym import GymEnv
from torchrl.modules import ProbabilisticActor, ValueOperator, TanhNormal
from torchrl.objectives import ClipPPOLoss
from torchrl.objectives.value import GAE

env = GymEnv("Pendulum-v1") 
model = TensorDictModule(
  nn.Sequential(
      nn.Linear(3, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 2),
      NormalParamExtractor()
  ),
  in_keys=["observation"],
  out_keys=["loc", "scale"]
)
critic = ValueOperator(
  nn.Sequential(
      nn.Linear(3, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 1),
  ),
  in_keys=["observation"],
)
actor = ProbabilisticActor(
  model,
  in_keys=["loc", "scale"],
  distribution_class=TanhNormal,
  distribution_kwargs={"low": -1.0, "high": 1.0},
  return_log_prob=True
  )
buffer = TensorDictReplayBuffer(
  storage=LazyTensorStorage(1000),
  sampler=SamplerWithoutReplacement(),
  batch_size=50,
  )
collector = SyncDataCollector(
  env,
  actor,
  frames_per_batch=1000,
  total_frames=1_000_000,
)
loss_fn = ClipPPOLoss(actor, critic)
adv_fn = GAE(value_network=critic, average_gae=True, gamma=0.99, lmbda=0.95)
optim = torch.optim.Adam(loss_fn.parameters(), lr=2e-4)

for data in collector:  # collect data
  for epoch in range(10):
      adv_fn(data)  # compute advantage
      buffer.extend(data)
      for sample in buffer:  # consume data
          loss_vals = loss_fn(sample)
          loss_val = sum(
              value for key, value in loss_vals.items() if
              key.startswith("loss")
              )
          loss_val.backward()
          optim.step()
          optim.zero_grad()
  print(f"avg reward: {data['next', 'reward'].mean().item(): 4.4f}")

Here is an example of how the environment API relies on tensordict to carry data from one function to another during a rollout execution: Alt Text

TensorDict makes it easy to re-use pieces of code across environments, models and algorithms.

Code

For instance, here's how to code a rollout in TorchRL:

- obs, done = env.reset()
+ tensordict = env.reset()
policy = SafeModule(
    model,
    in_keys=["observation_pixels", "observation_vector"],
    out_keys=["action"],
)
out = []
for i in range(n_steps):
-     action, log_prob = policy(obs)
-     next_obs, reward, done, info = env.step(action)
-     out.append((obs, next_obs, action, log_prob, reward, done))
-     obs = next_obs
+     tensordict = policy(tensordict)
+     tensordict = env.step(tensordict)
+     out.append(tensordict)
+     tensordict = step_mdp(tensordict)  # renames next_observation_* keys to observation_*
- obs, next_obs, action, log_prob, reward, done = [torch.stack(vals, 0) for vals in zip(*out)]
+ out = torch.stack(out, 0)  # TensorDict supports multiple tensor operations

Using this, TorchRL abstracts away the input / output signatures of the modules, env, collectors, replay buffers and losses of the library, allowing all primitives to be easily recycled across settings.

Code

Here's another example of an off-policy training loop in TorchRL (assuming that a data collector, a replay buffer, a loss and an optimizer have been instantiated):

- for i, (obs, next_obs, action, hidden_state, reward, done) in enumerate(collector):
+ for i, tensordict in enumerate(collector):
-     replay_buffer.add((obs, next_obs, action, log_prob, reward, done))
+     replay_buffer.add(tensordict)
    for j in range(num_optim_steps):
-         obs, next_obs, action, hidden_state, reward, done = replay_buffer.sample(batch_size)
-         loss = loss_fn(obs, next_obs, action, hidden_state, reward, done)
+         tensordict = replay_buffer.sample(batch_size)
+         loss = loss_fn(tensordict)
        loss.backward()
        optim.step()
        optim.zero_grad()

This training loop can be re-used across algorithms as it makes a minimal number of assumptions about the structure of the data.

TensorDict supports multiple tensor operations on its device and shape (the shape of TensorDict, or its batch size, is the common arbitrary N first dimensions of all its contained tensors):

Code
# stack and cat
tensordict = torch.stack(list_of_tensordicts, 0)
tensordict = torch.cat(list_of_tensordicts, 0)
# reshape
tensordict = tensordict.view(-1)
tensordict = tensordict.permute(0, 2, 1)
tensordict = tensordict.unsqueeze(-1)
tensordict = tensordict.squeeze(-1)
# indexing
tensordict = tensordict[:2]
tensordict[:, 2] = sub_tensordict
# device and memory location
tensordict.cuda()
tensordict.to("cuda:1")
tensordict.share_memory_()

TensorDict comes with a dedicated tensordict.nn module that contains everything you might need to write your model with it. And it is functorch and torch.compile compatible!

Code
transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
+ td_module = SafeModule(transformer_model, in_keys=["src", "tgt"], out_keys=["out"])
src = torch.rand((10, 32, 512))
tgt = torch.rand((20, 32, 512))
+ tensordict = TensorDict({"src": src, "tgt": tgt}, batch_size=[20, 32])
- out = transformer_model(src, tgt)
+ td_module(tensordict)
+ out = tensordict["out"]

The TensorDictSequential class allows to branch sequences of nn.Module instances in a highly modular way. For instance, here is an implementation of a transformer using the encoder and decoder blocks:

encoder_module = TransformerEncoder(...)
encoder = TensorDictSequential(encoder_module, in_keys=["src", "src_mask"], out_keys=["memory"])
decoder_module = TransformerDecoder(...)
decoder = TensorDictModule(decoder_module, in_keys=["tgt", "memory"], out_keys=["output"])
transformer = TensorDictSequential(encoder, decoder)
assert transformer.in_keys == ["src", "src_mask", "tgt"]
assert transformer.out_keys == ["memory", "output"]

TensorDictSequential allows to isolate subgraphs by querying a set of desired input / output keys:

transformer.select_subsequence(out_keys=["memory"])  # returns the encoder
transformer.select_subsequence(in_keys=["tgt", "memory"])  # returns the decoder

Check TensorDict tutorials to learn more!

Features

  • A common interface for environments which supports common libraries (OpenAI gym, deepmind control lab, etc.)(1) and state-less execution (e.g. Model-based environments). The batched environments containers allow parallel execution(2). A common PyTorch-first class of tensor-specification class is also provided. TorchRL's environments API is simple but stringent and specific. Check the documentation and tutorial to learn more!

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    env_parallel = ParallelEnv(4, env_make)  # creates 4 envs in parallel
    tensordict = env_parallel.rollout(max_steps=20, policy=None)  # random rollout (no policy given)
    assert tensordict.shape == [4, 20]  # 4 envs, 20 steps rollout
    env_parallel.action_spec.is_in(tensordict["action"])  # spec check returns True
    
  • multiprocess and distributed data collectors(2) that work synchronously or asynchronously. Through the use of TensorDict, TorchRL's training loops are made very similar to regular training loops in supervised learning (although the "dataloader" -- read data collector -- is modified on-the-fly):

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    collector = MultiaSyncDataCollector(
        [env_make, env_make],
        policy=policy,
        devices=["cuda:0", "cuda:0"],
        total_frames=10000,
        frames_per_batch=50,
        ...
    )
    for i, tensordict_data in enumerate(collector):
        loss = loss_module(tensordict_data)
        loss.backward()
        optim.step()
        optim.zero_grad()
        collector.update_policy_weights_()
    

    Check our distributed collector examples to learn more about ultra-fast data collection with TorchRL.

  • efficient(2) and generic(1) replay buffers with modularized storage:

    Code
    storage = LazyMemmapStorage(  # memory-mapped (physical) storage
        cfg.buffer_size,
        scratch_dir="/tmp/"
    )
    buffer = TensorDictPrioritizedReplayBuffer(
        alpha=0.7,
        beta=0.5,
        collate_fn=lambda x: x,
        pin_memory=device != torch.device("cpu"),
        prefetch=10,  # multi-threaded sampling
        storage=storage
    )
    

    Replay buffers are also offered as wrappers around common datasets for offline RL:

    Code
    from torchrl.data.replay_buffers import SamplerWithoutReplacement
    from torchrl.data.datasets.d4rl import D4RLExperienceReplay
    data = D4RLExperienceReplay(
        "maze2d-open-v0",
        split_trajs=True,
        batch_size=128,
        sampler=SamplerWithoutReplacement(drop_last=True),
    )
    for sample in data:  # or alternatively sample = data.sample()
        fun(sample)
    
  • cross-library environment transforms(1), executed on device and in a vectorized fashion(2), which process and prepare the data coming out of the environments to be used by the agent:

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    env_base = ParallelEnv(4, env_make, device="cuda:0")  # creates 4 envs in parallel
    env = TransformedEnv(
        env_base,
        Compose(
            ToTensorImage(),
            ObservationNorm(loc=0.5, scale=1.0)),  # executes the transforms once and on device
    )
    tensordict = env.reset()
    assert tensordict.device == torch.device("cuda:0")
    

    Other transforms include: reward scaling (RewardScaling), shape operations (concatenation of tensors, unsqueezing etc.), concatenation of successive operations (CatFrames), resizing (Resize) and many more.

    Unlike other libraries, the transforms are stacked as a list (and not wrapped in each other), which makes it easy to add and remove them at will:

    env.insert_transform(0, NoopResetEnv())  # inserts the NoopResetEnv transform at the index 0
    

    Nevertheless, transforms can access and execute operations on the parent environment:

    transform = env.transform[1]  # gathers the second transform of the list
    parent_env = transform.parent  # returns the base environment of the second transform, i.e. the base env + the first transform
    
  • various tools for distributed learning (e.g. memory mapped tensors)(2);

  • various architectures and models (e.g. actor-critic)(1):

    Code
    # create an nn.Module
    common_module = ConvNet(
        bias_last_layer=True,
        depth=None,
        num_cells=[32, 64, 64],
        kernel_sizes=[8, 4, 3],
        strides=[4, 2, 1],
    )
    # Wrap it in a SafeModule, indicating what key to read in and where to
    # write out the output
    common_module = SafeModule(
        common_module,
        in_keys=["pixels"],
        out_keys=["hidden"],
    )
    # Wrap the policy module in NormalParamsWrapper, such that the output
    # tensor is split in loc and scale, and scale is mapped onto a positive space
    policy_module = SafeModule(
        NormalParamsWrapper(
            MLP(num_cells=[64, 64], out_features=32, activation=nn.ELU)
        ),
        in_keys=["hidden"],
        out_keys=["loc", "scale"],
    )
    # Use a SafeProbabilisticTensorDictSequential to combine the SafeModule with a
    # SafeProbabilisticModule, indicating how to build the
    # torch.distribution.Distribution object and what to do with it
    policy_module = SafeProbabilisticTensorDictSequential(  # stochastic policy
        policy_module,
        SafeProbabilisticModule(
            in_keys=["loc", "scale"],
            out_keys="action",
            distribution_class=TanhNormal,
        ),
    )
    value_module = MLP(
        num_cells=[64, 64],
        out_features=1,
        activation=nn.ELU,
    )
    # Wrap the policy and value funciton in a common module
    actor_value = ActorValueOperator(common_module, policy_module, value_module)
    # standalone policy from this
    standalone_policy = actor_value.get_policy_operator()
    
  • exploration wrappers and modules to easily swap between exploration and exploitation(1):

    Code
    policy_explore = EGreedyWrapper(policy)
    with set_exploration_type(ExplorationType.RANDOM):
        tensordict = policy_explore(tensordict)  # will use eps-greedy
    with set_exploration_type(ExplorationType.DETERMINISTIC):
        tensordict = policy_explore(tensordict)  # will not use eps-greedy
    
  • A series of efficient loss modules and highly vectorized functional return and advantage computation.

    Code

    Loss modules

    from torchrl.objectives import DQNLoss
    loss_module = DQNLoss(value_network=value_network, gamma=0.99)
    tensordict = replay_buffer.sample(batch_size)
    loss = loss_module(tensordict)
    

    Advantage computation

    from torchrl.objectives.value.functional import vec_td_lambda_return_estimate
    advantage = vec_td_lambda_return_estimate(gamma, lmbda, next_state_value, reward, done, terminated)
    
  • a generic trainer class(1) that executes the aforementioned training loop. Through a hooking mechanism, it also supports any logging or data transformation operation at any given time.

  • various recipes to build models that correspond to the environment being deployed.

If you feel a feature is missing from the library, please submit an issue! If you would like to contribute to new features, check our call for contributions and our contribution page.

Examples, tutorials and demos

A series of State-of-the-Art implementations are provided with an illustrative purpose:

Algorithm Compile Support** Tensordict-free API Modular Losses Continuous and Discrete
DQN 1.9x + NA + (through ActionDiscretizer transform)
DDPG 1.87x + + - (continuous only)
IQL 3.22x + + +
CQL 2.68x + + +
TD3 2.27x + + - (continuous only)
TD3+BC untested + + - (continuous only)
A2C 2.67x + - +
PPO 2.42x + - +
SAC 2.62x + - +
REDQ 2.28x + - - (continuous only)
Dreamer v1 untested + + (different classes) - (continuous only)
Decision Transformers untested + NA - (continuous only)
CrossQ untested + + - (continuous only)
Gail untested + NA +
Impala untested + - +
IQL (MARL) untested + + +
DDPG (MARL) untested + + - (continuous only)
PPO (MARL) untested + - +
QMIX-VDN (MARL) untested + NA +
SAC (MARL) untested + - +
RLHF NA + NA NA

** The number indicates expected speed-up compared to eager mode when executed on CPU. Numbers may vary depending on architecture and device.

and many more to come!

Code examples displaying toy code snippets and training scripts are also available

Check the examples directory for more details about handling the various configuration settings.

We also provide tutorials and demos that give a sense of what the library can do.

Citation

If you're using TorchRL, please refer to this BibTeX entry to cite this work:

@misc{bou2023torchrl,
      title={TorchRL: A data-driven decision-making library for PyTorch}, 
      author={Albert Bou and Matteo Bettini and Sebastian Dittert and Vikash Kumar and Shagun Sodhani and Xiaomeng Yang and Gianni De Fabritiis and Vincent Moens},
      year={2023},
      eprint={2306.00577},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Installation

Create a conda environment where the packages will be installed.

conda create --name torch_rl python=3.9
conda activate torch_rl

PyTorch

Depending on the use of functorch that you want to make, you may want to install the latest (nightly) PyTorch release or the latest stable version of PyTorch. See here for a detailed list of commands, including pip3 or other special installation instructions.

Torchrl

You can install the latest stable release by using

pip3 install torchrl

This should work on linux, Windows 10 and OsX (Intel or Silicon chips). On certain Windows machines (Windows 11), one should install the library locally (see below).

The nightly build can be installed via

pip3 install torchrl-nightly

which we currently only ship for Linux and OsX (Intel) machines. Importantly, the nightly builds require the nightly builds of PyTorch too.

To install extra dependencies, call

pip3 install "torchrl[atari,dm_control,gym_continuous,rendering,tests,utils,marl,open_spiel,checkpointing]"

or a subset of these.

One may also desire to install the library locally. Three main reasons can motivate this:

  • the nightly/stable release isn't available for one's platform (eg, Windows 11, nightlies for Apple Silicon etc.);
  • contributing to the code;
  • install torchrl with a previous version of PyTorch (any version >= 2.0) (note that this should also be doable via a regular install followed by a downgrade to a previous pytorch version -- but the C++ binaries will not be available so some feature will not work,
    such as prioritized replay buffers and the like.)

To install the library locally, start by cloning the repo:

git clone https://github.com/pytorch/rl

and don't forget to check out the branch or tag you want to use for the build:

git checkout v0.4.0

Go to the directory where you have cloned the torchrl repo and install it (after installing ninja)

cd /path/to/torchrl/
pip3 install ninja -U
python setup.py develop

One can also build the wheels to distribute to co-workers using

python setup.py bdist_wheel

Your wheels will be stored there ./dist/torchrl<name>.whl and installable via

pip install torchrl<name>.whl

Warning: Unfortunately, pip3 install -e . does not currently work. Contributions to help fix this are welcome!

On M1 machines, this should work out-of-the-box with the nightly build of PyTorch. If the generation of this artifact in MacOs M1 doesn't work correctly or in the execution the message (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64e')) appears, then try

ARCHFLAGS="-arch arm64" python setup.py develop

To run a quick sanity check, leave that directory (e.g. by executing cd ~/) and try to import the library.

python -c "import torchrl"

This should not return any warning or error.

Optional dependencies

The following libraries can be installed depending on the usage one wants to make of torchrl:

# diverse
pip3 install tqdm tensorboard "hydra-core>=1.1" hydra-submitit-launcher

# rendering
pip3 install moviepy

# deepmind control suite
pip3 install dm_control

# gym, atari games
pip3 install "gym[atari]" "gym[accept-rom-license]" pygame

# tests
pip3 install pytest pyyaml pytest-instafail

# tensorboard
pip3 install tensorboard

# wandb
pip3 install wandb

Troubleshooting

If a ModuleNotFoundError: No module named ���torchrl._torchrl errors occurs (or a warning indicating that the C++ binaries could not be loaded), it means that the C++ extensions were not installed or not found.

  • One common reason might be that you are trying to import torchrl from within the git repo location. The following code snippet should return an error if torchrl has not been installed in develop mode:
    cd ~/path/to/rl/repo
    python -c 'from torchrl.envs.libs.gym import GymEnv'
    
    If this is the case, consider executing torchrl from another location.
  • If you're not importing torchrl from within its repo location, it could be caused by a problem during the local installation. Check the log after the python setup.py develop. One common cause is a g++/C++ version discrepancy and/or a problem with the ninja library.
  • If the problem persists, feel free to open an issue on the topic in the repo, we'll make our best to help!
  • On MacOs, we recommend installing XCode first. With Apple Silicon M1 chips, make sure you are using the arm64-built python (e.g. here). Running the following lines of code
    wget https://raw.githubusercontent.com/pytorch/pytorch/master/torch/utils/collect_env.py
    python collect_env.py
    
    should display
    OS: macOS *** (arm64)
    
    and not
    OS: macOS **** (x86_64)
    

Versioning issues can cause error message of the type undefined symbol and such. For these, refer to the versioning issues document for a complete explanation and proposed workarounds.

Asking a question

If you spot a bug in the library, please raise an issue in this repo.

If you have a more generic question regarding RL in PyTorch, post it on the PyTorch forum.

Contributing

Internal collaborations to torchrl are welcome! Feel free to fork, submit issues and PRs. You can checkout the detailed contribution guide here. As mentioned above, a list of open contributions can be found in here.

Contributors are recommended to install pre-commit hooks (using pre-commit install). pre-commit will check for linting related issues when the code is committed locally. You can disable th check by appending -n to your commit command: git commit -m <commit message> -n

Disclaimer

This library is released as a PyTorch beta feature. BC-breaking changes are likely to happen but they will be introduced with a deprecation warranty after a few release cycles.

License

TorchRL is licensed under the MIT License. See LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchrl-0.6.0-cp312-cp312-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchrl-0.6.0-cp312-cp312-manylinux1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.12

torchrl-0.6.0-cp312-cp312-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torchrl-0.6.0-cp311-cp311-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchrl-0.6.0-cp311-cp311-manylinux1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11

torchrl-0.6.0-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchrl-0.6.0-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchrl-0.6.0-cp310-cp310-manylinux1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10

torchrl-0.6.0-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchrl-0.6.0-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchrl-0.6.0-cp39-cp39-manylinux1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9

torchrl-0.6.0-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file torchrl-0.6.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: torchrl-0.6.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for torchrl-0.6.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3b888ad05be6a041d907d0513fb647f98205726fc258081094752ff9cdce5f9d
MD5 a3b9f0005f655ce4ab3cb7b4643e2c40
BLAKE2b-256 4dcfe071f992f3d9b0a49276865ccb7cf9057466f09e7e088a35b8f4bceafe9f

See more details on using hashes here.

File details

Details for the file torchrl-0.6.0-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl-0.6.0-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b5f0328845fe3e084a1ddb82ba978e592a31646cdfa414d6517c52e677c20355
MD5 5e1066443b08be9b7a8281bdea5a4590
BLAKE2b-256 81d3b223d934d329d889c21ec222dfc75f1235516914a7e54697c54a2e28ec74

See more details on using hashes here.

File details

Details for the file torchrl-0.6.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchrl-0.6.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d978c4714f10137927f5ae47196130d2924f84ff551aaa8053c2c4d15e0e77f2
MD5 94c6e5feae29f294918d3f1ffc6d92ba
BLAKE2b-256 1e8306d98ec6557ab81b02bbb6f8247690f6b6790d1406b408dd6a2cce6c90b4

See more details on using hashes here.

File details

Details for the file torchrl-0.6.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: torchrl-0.6.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for torchrl-0.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 089792c124981b0d7eba8031ae36d155a37aab0167b0ff4ebb77a58686e7773e
MD5 d842666646c75320261e443bc72f130c
BLAKE2b-256 00dae37605b50155352431548b1cd8b0f3bd0c023f754ed641f0430c4932fd2d

See more details on using hashes here.

File details

Details for the file torchrl-0.6.0-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl-0.6.0-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 04a2cd51795b364cc477161b6242e9e8156fb0d7e321659180a85c63a7a463ba
MD5 1936d481bffea54858f6d1c7fce1ba5b
BLAKE2b-256 594bcf3c3a00ba80429ee2029ffbc309b4a4d80cd3878d8d529bf81699d75816

See more details on using hashes here.

File details

Details for the file torchrl-0.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchrl-0.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c045581e9d27270631cc1dc069817f068732361cea4f23412a608a259e4046bc
MD5 c8d7df0a35e2a2da162c3994bb1fda9c
BLAKE2b-256 8a2760da96f0914a3427f4708a6b25db7231d878db5cdb85c7bbaa9cbdf22241

See more details on using hashes here.

File details

Details for the file torchrl-0.6.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: torchrl-0.6.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for torchrl-0.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6ee87e349833f3fc9031a02b4cfb120d17f703a2e8aebce1c1cde285cfe34241
MD5 e0366763b2110eeb5ccd837d047c0a35
BLAKE2b-256 505c101d9dcf2902f20feb5fb7e8cec531aa242207d979ace63238ef65c0ed0d

See more details on using hashes here.

File details

Details for the file torchrl-0.6.0-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl-0.6.0-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 07594f8c80156a6f6d2d9b91b76062932aa99e921060855dfd0a19250638130b
MD5 18ade49a4e8cad950899e10a22345f06
BLAKE2b-256 1f77203d992c10a2b31ab6da41f2e9b7691d14c7cfeaf04424597e808394c0d5

See more details on using hashes here.

File details

Details for the file torchrl-0.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchrl-0.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d26a9fc3dcbcc04c0d718c53c6f4af8336e7482bca03137c5de4ba4989176065
MD5 75e7568c5797dc57cb7f3f7c1bb7c4dd
BLAKE2b-256 6f11286298b1f1d9af20561d29bfc905dbf573c62c27d2bceb9ce92451cf1bf9

See more details on using hashes here.

File details

Details for the file torchrl-0.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: torchrl-0.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for torchrl-0.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a0ebb9df6a176d9de759e84a232bb2db1f136b160a9d0057fc8e492ee6baf4a6
MD5 baea46ec6cb7453d90e320029e78c99f
BLAKE2b-256 54b6be20d71200871da40e9209228b468cdd96c5ffec3b3bf644e70f3b2f4589

See more details on using hashes here.

File details

Details for the file torchrl-0.6.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl-0.6.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c4d23fbd5c057d06c4d19b4c3331fe17f6c6390c849cd7cd5fb44386e486cc56
MD5 7b949848184cf9774bc31359fd04ee1f
BLAKE2b-256 ead0c1a8290f653aa473518ad874f001e117246628632963c00b135d66396981

See more details on using hashes here.

File details

Details for the file torchrl-0.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchrl-0.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7fc4bdb07d6d19e5a66891e142fee17df97df34de5efcef7c978c0fc46f01445
MD5 12912d6cbafed3f7c18d770daf1c71c7
BLAKE2b-256 5614d8f94c81fd96cbb24edfb43ea73e38bc361bb3753a6772e70779d4ae460f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page