Skip to main content

No project description provided

Project description

Unit-tests Documentation Benchmarks codecov Twitter Follow Python version GitHub license pypi version pypi nightly version Downloads Downloads Discord Shield

TorchRL

Documentation | TensorDict | Features | Examples, tutorials and demos | Citation | Installation | Asking a question | Contributing

TorchRL is an open-source Reinforcement Learning (RL) library for PyTorch.

It provides pytorch and python-first, low and high level abstractions for RL that are intended to be efficient, modular, documented and properly tested. The code is aimed at supporting research in RL. Most of it is written in python in a highly modular way, such that researchers can easily swap components, transform them or write new ones with little effort.

This repo attempts to align with the existing pytorch ecosystem libraries in that it has a dataset pillar (torchrl/envs), transforms, models, data utilities (e.g. collectors and containers), etc. TorchRL aims at having as few dependencies as possible (python standard library, numpy and pytorch). Common environment libraries (e.g. OpenAI gym) are only optional.

On the low-level end, torchrl comes with a set of highly re-usable functionals for cost functions, returns and data processing.

TorchRL aims at (1) a high modularity and (2) good runtime performance. Read the full paper for a more curated description of the library.

Documentation and knowledge base

The TorchRL documentation can be found here. It contains tutorials and the API reference.

TorchRL also provides a RL knowledge base to help you debug your code, or simply learn the basics of RL. Check it out here.

We have some introductory videos for you to get to know the library better, check them out:

Writing simplified and portable RL codebase with TensorDict

RL algorithms are very heterogeneous, and it can be hard to recycle a codebase across settings (e.g. from online to offline, from state-based to pixel-based learning). TorchRL solves this problem through TensorDict, a convenient data structure(1) that can be used to streamline one's RL codebase. With this tool, one can write a complete PPO training script in less than 100 lines of code!

Code
import torch
from tensordict.nn import TensorDictModule
from tensordict.nn.distributions import NormalParamExtractor
from torch import nn

from torchrl.collectors import SyncDataCollector
from torchrl.data.replay_buffers import TensorDictReplayBuffer, \
    LazyTensorStorage, SamplerWithoutReplacement
from torchrl.envs.libs.gym import GymEnv
from torchrl.modules import ProbabilisticActor, ValueOperator, TanhNormal
from torchrl.objectives import ClipPPOLoss
from torchrl.objectives.value import GAE

env = GymEnv("Pendulum-v1")
model = TensorDictModule(
    nn.Sequential(
        nn.Linear(3, 128), nn.Tanh(),
        nn.Linear(128, 128), nn.Tanh(),
        nn.Linear(128, 128), nn.Tanh(),
        nn.Linear(128, 2),
        NormalParamExtractor()
    ),
    in_keys=["observation"],
    out_keys=["loc", "scale"]
)
critic = ValueOperator(
    nn.Sequential(
        nn.Linear(3, 128), nn.Tanh(),
        nn.Linear(128, 128), nn.Tanh(),
        nn.Linear(128, 128), nn.Tanh(),
        nn.Linear(128, 1),
    ),
    in_keys=["observation"],
)
actor = ProbabilisticActor(
    model,
    in_keys=["loc", "scale"],
    distribution_class=TanhNormal,
    distribution_kwargs={"min": -1.0, "max": 1.0},
    return_log_prob=True
    )
buffer = TensorDictReplayBuffer(
    LazyTensorStorage(1000),
    SamplerWithoutReplacement()
    )
collector = SyncDataCollector(
    env,
    actor,
    frames_per_batch=1000,
    total_frames=1_000_000
    )
loss_fn = ClipPPOLoss(actor, critic, gamma=0.99)
optim = torch.optim.Adam(loss_fn.parameters(), lr=2e-4)
adv_fn = GAE(value_network=critic, gamma=0.99, lmbda=0.95, average_gae=True)
for data in collector:  # collect data
    for epoch in range(10):
        adv_fn(data)  # compute advantage
        buffer.extend(data.view(-1))
        for i in range(20):  # consume data
            sample = buffer.sample(50)  # mini-batch
            loss_vals = loss_fn(sample)
            loss_val = sum(
                value for key, value in loss_vals.items() if
                key.startswith("loss")
                )
            loss_val.backward()
            optim.step()
            optim.zero_grad()
    print(f"avg reward: {data['next', 'reward'].mean().item(): 4.4f}")

Here is an example of how the environment API relies on tensordict to carry data from one function to another during a rollout execution: Alt Text

TensorDict makes it easy to re-use pieces of code across environments, models and algorithms.

Code

For instance, here's how to code a rollout in TorchRL:

- obs, done = env.reset()
+ tensordict = env.reset()
policy = SafeModule(
    model,
    in_keys=["observation_pixels", "observation_vector"],
    out_keys=["action"],
)
out = []
for i in range(n_steps):
-     action, log_prob = policy(obs)
-     next_obs, reward, done, info = env.step(action)
-     out.append((obs, next_obs, action, log_prob, reward, done))
-     obs = next_obs
+     tensordict = policy(tensordict)
+     tensordict = env.step(tensordict)
+     out.append(tensordict)
+     tensordict = step_mdp(tensordict)  # renames next_observation_* keys to observation_*
- obs, next_obs, action, log_prob, reward, done = [torch.stack(vals, 0) for vals in zip(*out)]
+ out = torch.stack(out, 0)  # TensorDict supports multiple tensor operations

Using this, TorchRL abstracts away the input / output signatures of the modules, env, collectors, replay buffers and losses of the library, allowing all primitives to be easily recycled across settings.

Code

Here's another example of an off-policy training loop in TorchRL (assuming that a data collector, a replay buffer, a loss and an optimizer have been instantiated):

- for i, (obs, next_obs, action, hidden_state, reward, done) in enumerate(collector):
+ for i, tensordict in enumerate(collector):
-     replay_buffer.add((obs, next_obs, action, log_prob, reward, done))
+     replay_buffer.add(tensordict)
    for j in range(num_optim_steps):
-         obs, next_obs, action, hidden_state, reward, done = replay_buffer.sample(batch_size)
-         loss = loss_fn(obs, next_obs, action, hidden_state, reward, done)
+         tensordict = replay_buffer.sample(batch_size)
+         loss = loss_fn(tensordict)
        loss.backward()
        optim.step()
        optim.zero_grad()

This training loop can be re-used across algorithms as it makes a minimal number of assumptions about the structure of the data.

TensorDict supports multiple tensor operations on its device and shape (the shape of TensorDict, or its batch size, is the common arbitrary N first dimensions of all its contained tensors):

Code
# stack and cat
tensordict = torch.stack(list_of_tensordicts, 0)
tensordict = torch.cat(list_of_tensordicts, 0)
# reshape
tensordict = tensordict.view(-1)
tensordict = tensordict.permute(0, 2, 1)
tensordict = tensordict.unsqueeze(-1)
tensordict = tensordict.squeeze(-1)
# indexing
tensordict = tensordict[:2]
tensordict[:, 2] = sub_tensordict
# device and memory location
tensordict.cuda()
tensordict.to("cuda:1")
tensordict.share_memory_()

TensorDict comes with a dedicated tensordict.nn module that contains everything you might need to write your model with it. And it is functorch and torch.compile compatible!

Code
transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
+ td_module = SafeModule(transformer_model, in_keys=["src", "tgt"], out_keys=["out"])
src = torch.rand((10, 32, 512))
tgt = torch.rand((20, 32, 512))
+ tensordict = TensorDict({"src": src, "tgt": tgt}, batch_size=[20, 32])
- out = transformer_model(src, tgt)
+ td_module(tensordict)
+ out = tensordict["out"]

The TensorDictSequential class allows to branch sequences of nn.Module instances in a highly modular way. For instance, here is an implementation of a transformer using the encoder and decoder blocks:

encoder_module = TransformerEncoder(...)
encoder = TensorDictSequential(encoder_module, in_keys=["src", "src_mask"], out_keys=["memory"])
decoder_module = TransformerDecoder(...)
decoder = TensorDictModule(decoder_module, in_keys=["tgt", "memory"], out_keys=["output"])
transformer = TensorDictSequential(encoder, decoder)
assert transformer.in_keys == ["src", "src_mask", "tgt"]
assert transformer.out_keys == ["memory", "output"]

TensorDictSequential allows to isolate subgraphs by querying a set of desired input / output keys:

transformer.select_subsequence(out_keys=["memory"])  # returns the encoder
transformer.select_subsequence(in_keys=["tgt", "memory"])  # returns the decoder

Check TensorDict tutorials to learn more!

Features

  • A common interface for environments which supports common libraries (OpenAI gym, deepmind control lab, etc.)(1) and state-less execution (e.g. Model-based environments). The batched environments containers allow parallel execution(2). A common PyTorch-first class of tensor-specification class is also provided. TorchRL's environments API is simple but stringent and specific. Check the documentation and tutorial to learn more!

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    env_parallel = ParallelEnv(4, env_make)  # creates 4 envs in parallel
    tensordict = env_parallel.rollout(max_steps=20, policy=None)  # random rollout (no policy given)
    assert tensordict.shape == [4, 20]  # 4 envs, 20 steps rollout
    env_parallel.action_spec.is_in(tensordict["action"])  # spec check returns True
    
  • multiprocess and distributed data collectors(2) that work synchronously or asynchronously. Through the use of TensorDict, TorchRL's training loops are made very similar to regular training loops in supervised learning (although the "dataloader" -- read data collector -- is modified on-the-fly):

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    collector = MultiaSyncDataCollector(
        [env_make, env_make],
        policy=policy,
        devices=["cuda:0", "cuda:0"],
        total_frames=10000,
        frames_per_batch=50,
        ...
    )
    for i, tensordict_data in enumerate(collector):
        loss = loss_module(tensordict_data)
        loss.backward()
        optim.step()
        optim.zero_grad()
        collector.update_policy_weights_()
    

    Check our distributed collector examples to learn more about ultra-fast data collection with TorchRL.

  • efficient(2) and generic(1) replay buffers with modularized storage:

    Code
    storage = LazyMemmapStorage(  # memory-mapped (physical) storage
        cfg.buffer_size,
        scratch_dir="/tmp/"
    )
    buffer = TensorDictPrioritizedReplayBuffer(
        alpha=0.7,
        beta=0.5,
        collate_fn=lambda x: x,
        pin_memory=device != torch.device("cpu"),
        prefetch=10,  # multi-threaded sampling
        storage=storage
    )
    

    Replay buffers are also offered as wrappers around common datasets for offline RL:

    Code
    from torchrl.data.replay_buffers import SamplerWithoutReplacement
    from torchrl.data.datasets.d4rl import D4RLExperienceReplay
    data = D4RLExperienceReplay(
        "maze2d-open-v0",
        split_trajs=True,
        batch_size=128,
        sampler=SamplerWithoutReplacement(drop_last=True),
    )
    for sample in data:  # or alternatively sample = data.sample()
        fun(sample)
    
  • cross-library environment transforms(1), executed on device and in a vectorized fashion(2), which process and prepare the data coming out of the environments to be used by the agent:

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    env_base = ParallelEnv(4, env_make, device="cuda:0")  # creates 4 envs in parallel
    env = TransformedEnv(
        env_base,
        Compose(
            ToTensorImage(),
            ObservationNorm(loc=0.5, scale=1.0)),  # executes the transforms once and on device
    )
    tensordict = env.reset()
    assert tensordict.device == torch.device("cuda:0")
    

    Other transforms include: reward scaling (RewardScaling), shape operations (concatenation of tensors, unsqueezing etc.), concatenation of successive operations (CatFrames), resizing (Resize) and many more.

    Unlike other libraries, the transforms are stacked as a list (and not wrapped in each other), which makes it easy to add and remove them at will:

    env.insert_transform(0, NoopResetEnv())  # inserts the NoopResetEnv transform at the index 0
    

    Nevertheless, transforms can access and execute operations on the parent environment:

    transform = env.transform[1]  # gathers the second transform of the list
    parent_env = transform.parent  # returns the base environment of the second transform, i.e. the base env + the first transform
    
  • various tools for distributed learning (e.g. memory mapped tensors)(2);

  • various architectures and models (e.g. actor-critic)(1):

    Code
    # create an nn.Module
    common_module = ConvNet(
        bias_last_layer=True,
        depth=None,
        num_cells=[32, 64, 64],
        kernel_sizes=[8, 4, 3],
        strides=[4, 2, 1],
    )
    # Wrap it in a SafeModule, indicating what key to read in and where to
    # write out the output
    common_module = SafeModule(
        common_module,
        in_keys=["pixels"],
        out_keys=["hidden"],
    )
    # Wrap the policy module in NormalParamsWrapper, such that the output
    # tensor is split in loc and scale, and scale is mapped onto a positive space
    policy_module = SafeModule(
        NormalParamsWrapper(
            MLP(num_cells=[64, 64], out_features=32, activation=nn.ELU)
        ),
        in_keys=["hidden"],
        out_keys=["loc", "scale"],
    )
    # Use a SafeProbabilisticTensorDictSequential to combine the SafeModule with a
    # SafeProbabilisticModule, indicating how to build the
    # torch.distribution.Distribution object and what to do with it
    policy_module = SafeProbabilisticTensorDictSequential(  # stochastic policy
        policy_module,
        SafeProbabilisticModule(
            in_keys=["loc", "scale"],
            out_keys="action",
            distribution_class=TanhNormal,
        ),
    )
    value_module = MLP(
        num_cells=[64, 64],
        out_features=1,
        activation=nn.ELU,
    )
    # Wrap the policy and value funciton in a common module
    actor_value = ActorValueOperator(common_module, policy_module, value_module)
    # standalone policy from this
    standalone_policy = actor_value.get_policy_operator()
    
  • exploration wrappers and modules to easily swap between exploration and exploitation(1):

    Code
    policy_explore = EGreedyWrapper(policy)
    with set_exploration_type(ExplorationType.RANDOM):
        tensordict = policy_explore(tensordict)  # will use eps-greedy
    with set_exploration_type(ExplorationType.MODE):
        tensordict = policy_explore(tensordict)  # will not use eps-greedy
    
  • A series of efficient loss modules and highly vectorized functional return and advantage computation.

    Code

    Loss modules

    from torchrl.objectives import DQNLoss
    loss_module = DQNLoss(value_network=value_network, gamma=0.99)
    tensordict = replay_buffer.sample(batch_size)
    loss = loss_module(tensordict)
    

    Advantage computation

    from torchrl.objectives.value.functional import vec_td_lambda_return_estimate
    advantage = vec_td_lambda_return_estimate(gamma, lmbda, next_state_value, reward, done, terminated)
    
  • a generic trainer class(1) that executes the aforementioned training loop. Through a hooking mechanism, it also supports any logging or data transformation operation at any given time.

  • various recipes to build models that correspond to the environment being deployed.

If you feel a feature is missing from the library, please submit an issue! If you would like to contribute to new features, check our call for contributions and our contribution page.

Examples, tutorials and demos

A series of examples are provided with an illustrative purpose:

and many more to come!

Check the examples markdown directory for more details about handling the various configuration settings.

We also provide tutorials and demos that give a sense of what the library can do.

Citation

If you're using TorchRL, please refer to this BibTeX entry to cite this work:

@misc{bou2023torchrl,
      title={TorchRL: A data-driven decision-making library for PyTorch}, 
      author={Albert Bou and Matteo Bettini and Sebastian Dittert and Vikash Kumar and Shagun Sodhani and Xiaomeng Yang and Gianni De Fabritiis and Vincent Moens},
      year={2023},
      eprint={2306.00577},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Installation

Create a conda environment where the packages will be installed.

conda create --name torch_rl python=3.9
conda activate torch_rl

PyTorch

Depending on the use of functorch that you want to make, you may want to install the latest (nightly) PyTorch release or the latest stable version of PyTorch. See here for a detailed list of commands, including pip3 or other special installation instructions.

Torchrl

You can install the latest stable release by using

pip3 install torchrl

This should work on linux, Windows 10 and OsX (Intel or Silicon chips). On certain Windows machines (Windows 11), one should install the library locally (see below).

The nightly build can be installed via

pip install torchrl-nightly

which we currently only ship for Linux and OsX (Intel) machines. Importantly, the nightly builds require the nightly builds of PyTorch too.

To install extra dependencies, call

pip3 install "torchrl[atari,dm_control,gym_continuous,rendering,tests,utils,marl,checkpointing]"

or a subset of these.

One may also desire to install the library locally. Three main reasons can motivate this:

  • the nightly/stable release isn't available for one's platform (eg, Windows 11, nightlies for Apple Silicon etc.);
  • contributing to the code;
  • install torchrl with a previous version of PyTorch (note that this should also be doable via a regular install followed by a downgrade to a previous pytorch version -- but the C++ binaries will not be available.)

To install the library locally, start by cloning the repo:

git clone https://github.com/pytorch/rl

Go to the directory where you have cloned the torchrl repo and install it (after installing ninja)

cd /path/to/torchrl/
pip install ninja -U
python setup.py develop

(unfortunately, pip install -e . will not work).

On M1 machines, this should work out-of-the-box with the nightly build of PyTorch. If the generation of this artifact in MacOs M1 doesn't work correctly or in the execution the message (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64e')) appears, then try

ARCHFLAGS="-arch arm64" python setup.py develop

To run a quick sanity check, leave that directory (e.g. by executing cd ~/) and try to import the library.

python -c "import torchrl"

This should not return any warning or error.

Optional dependencies

The following libraries can be installed depending on the usage one wants to make of torchrl:

# diverse
pip3 install tqdm tensorboard "hydra-core>=1.1" hydra-submitit-launcher

# rendering
pip3 install moviepy

# deepmind control suite
pip3 install dm_control

# gym, atari games
pip3 install "gym[atari]" "gym[accept-rom-license]" pygame

# tests
pip3 install pytest pyyaml pytest-instafail

# tensorboard
pip3 install tensorboard

# wandb
pip3 install wandb

Troubleshooting

If a ModuleNotFoundError: No module named ‘torchrl._torchrl errors occurs (or a warning indicating that the C++ binaries could not be loaded), it means that the C++ extensions were not installed or not found.

  • One common reason might be that you are trying to import torchrl from within the git repo location. The following code snippet should return an error if torchrl has not been installed in develop mode:
    cd ~/path/to/rl/repo
    python -c 'from torchrl.envs.libs.gym import GymEnv'
    
    If this is the case, consider executing torchrl from another location.
  • If you're not importing torchrl from within its repo location, it could be caused by a problem during the local installation. Check the log after the python setup.py develop. One common cause is a g++/C++ version discrepancy and/or a problem with the ninja library.
  • If the problem persists, feel free to open an issue on the topic in the repo, we'll make our best to help!
  • On MacOs, we recommend installing XCode first. With Apple Silicon M1 chips, make sure you are using the arm64-built python (e.g. here). Running the following lines of code
    wget https://raw.githubusercontent.com/pytorch/pytorch/master/torch/utils/collect_env.py
    python collect_env.py
    
    should display
    OS: macOS *** (arm64)
    
    and not
    OS: macOS **** (x86_64)
    

Versioning issues can cause error message of the type undefined symbol and such. For these, refer to the versioning issues document for a complete explanation and proposed workarounds.

Asking a question

If you spot a bug in the library, please raise an issue in this repo.

If you have a more generic question regarding RL in PyTorch, post it on the PyTorch forum.

Contributing

Internal collaborations to torchrl are welcome! Feel free to fork, submit issues and PRs. You can checkout the detailed contribution guide here. As mentioned above, a list of open contributions can be found in here.

Contributors are recommended to install pre-commit hooks (using pre-commit install). pre-commit will check for linting related issues when the code is committed locally. You can disable th check by appending -n to your commit command: git commit -m <commit message> -n

Disclaimer

This library is released as a PyTorch beta feature. BC-breaking changes are likely to happen but they will be introduced with a deprecation warranty after a few release cycles.

License

TorchRL is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchrl_nightly-2024.2.1-cp311-cp311-win_amd64.whl (833.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

torchrl_nightly-2024.2.1-cp311-cp311-macosx_10_9_universal2.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

torchrl_nightly-2024.2.1-cp310-cp310-win_amd64.whl (835.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

torchrl_nightly-2024.2.1-cp310-cp310-macosx_10_15_x86_64.whl (875.7 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

torchrl_nightly-2024.2.1-cp39-cp39-win_amd64.whl (832.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

torchrl_nightly-2024.2.1-cp39-cp39-macosx_11_0_x86_64.whl (875.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

torchrl_nightly-2024.2.1-cp38-cp38-win_amd64.whl (835.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

torchrl_nightly-2024.2.1-cp38-cp38-macosx_11_0_x86_64.whl (875.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

File details

Details for the file torchrl_nightly-2024.2.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 dc1d357de2811ab901cca988e0aac614de9385bcdaf07e3c20102aa82f9627f7
MD5 2463f76135ea9506ca3df8e44af9297a
BLAKE2b-256 bd172dbb66a7c1768e418eb2dc2340f1387d455375b16692d6d14bfaca9b7e32

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.1-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.1-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c72e5dcc3e6edf7d263f7e2ee990e42949cc42720959d3c0093d4d77dfd2e6cb
MD5 6c7cfe29956c9474a5c90f51b4fa0008
BLAKE2b-256 ed3a588269584af3769bbb8474d3fd50efab139a44c8a590d86a5e1a0add9b06

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ddd57c63b9f2bd610de27ea0b28e8a48a358dce70328deda7cbbb5c18f24da9a
MD5 bb0e3270fa47de19b986c898a356b273
BLAKE2b-256 8908b0c7fcbf4d6a0660354080251b57f156b715b8551abc9342abb26521d01c

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6b945d90231144a13e888129be569b2ae6f5c56e9339cbeea2d65539d4f24627
MD5 e4645906a389b611418025b537273a23
BLAKE2b-256 e23790af12e4c0124890c810acfa5b0c72bb999cdd393f83d072695b8580be1d

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.1-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.1-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7035fec444061ef0d071b47ade5895ace4343f85753083708ee1166557647273
MD5 371fb34426dab98e99b06e4d15842168
BLAKE2b-256 e5b3117f61fee3c1c501f71dc63aeb6d43b25270cab82dfba4d9051967821a9b

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 9582dd8d879f13cf9600f5b06e19d30d0f9f0582c4bc66962dbb67b6b8abbbfb
MD5 f99be685934fb4fa11426bbb2184844e
BLAKE2b-256 8ae216f669549659c03297031336977bbe734d66999697c3f01598b113e23d6d

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d44b9c700d2d04bdd8d633be00a628ce3b4d8da668b85488ac3778a845651314
MD5 0e05197fc7c061048c29d3533b2ba64d
BLAKE2b-256 f598eaf6062c4f0c3f62bfd0b083223cf85cc2e885024d8d7d0dcdd4dec0d269

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d4c47b5f307f082bfb5fc403dba5356b0d2663061ee8e475082745babfbba6f2
MD5 28550487c54a9ad60767ac6dd42c2d08
BLAKE2b-256 e70cf22d47067233d71fbde1bb4710f5dce817609236878ae86f3f3df1dcd673

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.1-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.1-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 5a66d22778c452ae5347c0bf40d975bb14027feabba8bb881ca95a1c609d4552
MD5 95fbbf794e652d0a106f095e46613d50
BLAKE2b-256 bd28085578710508689a1b923f5724f204c64655ae317e368ab1133bc459e649

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 335951c84686defa2d93f01cb9aec5da7063c66f0c640b9a30120fb6d77c1ddd
MD5 aec4e36dc450899d92cc6d76497a2509
BLAKE2b-256 38f7ebdc4cad941bd60681535f44502bb3cefd0621d230f4626f144485eed762

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b8a4b5f165392332193f29f2931aae9200e47cfa8c9f53a4f6d7d5257d53be62
MD5 5d3f30ca10d6847890232e6de1eab5a5
BLAKE2b-256 1bcf51f435156b2a7a8546c87873701c4ce149b5cc6cdf646b134b510c074874

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.1-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.1-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 3c09c5fbd214e10ae77beac8ca194a17c7c9755b235423f4ac022c6dfc87a6b6
MD5 618c8d247f93f24840e428250de20b1d
BLAKE2b-256 62e3cdb42a2e22ebdf62d7a357ab88e0457d63d8479e4691a02e83fcdff857a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page