Skip to main content

No project description provided

Project description

Unit-tests Documentation Benchmarks codecov Twitter Follow Python version GitHub license pypi version pypi nightly version Downloads Downloads Discord Shield

TorchRL

Documentation | TensorDict | Features | Examples, tutorials and demos | Citation | Installation | Asking a question | Contributing

TorchRL is an open-source Reinforcement Learning (RL) library for PyTorch.

It provides pytorch and python-first, low and high level abstractions for RL that are intended to be efficient, modular, documented and properly tested. The code is aimed at supporting research in RL. Most of it is written in python in a highly modular way, such that researchers can easily swap components, transform them or write new ones with little effort.

This repo attempts to align with the existing pytorch ecosystem libraries in that it has a dataset pillar (torchrl/envs), transforms, models, data utilities (e.g. collectors and containers), etc. TorchRL aims at having as few dependencies as possible (python standard library, numpy and pytorch). Common environment libraries (e.g. OpenAI gym) are only optional.

On the low-level end, torchrl comes with a set of highly re-usable functionals for cost functions, returns and data processing.

TorchRL aims at (1) a high modularity and (2) good runtime performance. Read the full paper for a more curated description of the library.

Getting started

Check our Getting Started tutorials for quickly ramp up with the basic features of the library!

Documentation and knowledge base

The TorchRL documentation can be found here. It contains tutorials and the API reference.

TorchRL also provides a RL knowledge base to help you debug your code, or simply learn the basics of RL. Check it out here.

We have some introductory videos for you to get to know the library better, check them out:

Writing simplified and portable RL codebase with TensorDict

RL algorithms are very heterogeneous, and it can be hard to recycle a codebase across settings (e.g. from online to offline, from state-based to pixel-based learning). TorchRL solves this problem through TensorDict, a convenient data structure(1) that can be used to streamline one's RL codebase. With this tool, one can write a complete PPO training script in less than 100 lines of code!

Code
import torch
from tensordict.nn import TensorDictModule
from tensordict.nn.distributions import NormalParamExtractor
from torch import nn

from torchrl.collectors import SyncDataCollector
from torchrl.data.replay_buffers import TensorDictReplayBuffer, \
    LazyTensorStorage, SamplerWithoutReplacement
from torchrl.envs.libs.gym import GymEnv
from torchrl.modules import ProbabilisticActor, ValueOperator, TanhNormal
from torchrl.objectives import ClipPPOLoss
from torchrl.objectives.value import GAE

env = GymEnv("Pendulum-v1")
model = TensorDictModule(
    nn.Sequential(
        nn.Linear(3, 128), nn.Tanh(),
        nn.Linear(128, 128), nn.Tanh(),
        nn.Linear(128, 128), nn.Tanh(),
        nn.Linear(128, 2),
        NormalParamExtractor()
    ),
    in_keys=["observation"],
    out_keys=["loc", "scale"]
)
critic = ValueOperator(
    nn.Sequential(
        nn.Linear(3, 128), nn.Tanh(),
        nn.Linear(128, 128), nn.Tanh(),
        nn.Linear(128, 128), nn.Tanh(),
        nn.Linear(128, 1),
    ),
    in_keys=["observation"],
)
actor = ProbabilisticActor(
    model,
    in_keys=["loc", "scale"],
    distribution_class=TanhNormal,
    distribution_kwargs={"min": -1.0, "max": 1.0},
    return_log_prob=True
    )
buffer = TensorDictReplayBuffer(
    LazyTensorStorage(1000),
    SamplerWithoutReplacement()
    )
collector = SyncDataCollector(
    env,
    actor,
    frames_per_batch=1000,
    total_frames=1_000_000
    )
loss_fn = ClipPPOLoss(actor, critic, gamma=0.99)
optim = torch.optim.Adam(loss_fn.parameters(), lr=2e-4)
adv_fn = GAE(value_network=critic, gamma=0.99, lmbda=0.95, average_gae=True)
for data in collector:  # collect data
    for epoch in range(10):
        adv_fn(data)  # compute advantage
        buffer.extend(data.view(-1))
        for i in range(20):  # consume data
            sample = buffer.sample(50)  # mini-batch
            loss_vals = loss_fn(sample)
            loss_val = sum(
                value for key, value in loss_vals.items() if
                key.startswith("loss")
                )
            loss_val.backward()
            optim.step()
            optim.zero_grad()
    print(f"avg reward: {data['next', 'reward'].mean().item(): 4.4f}")

Here is an example of how the environment API relies on tensordict to carry data from one function to another during a rollout execution: Alt Text

TensorDict makes it easy to re-use pieces of code across environments, models and algorithms.

Code

For instance, here's how to code a rollout in TorchRL:

- obs, done = env.reset()
+ tensordict = env.reset()
policy = SafeModule(
    model,
    in_keys=["observation_pixels", "observation_vector"],
    out_keys=["action"],
)
out = []
for i in range(n_steps):
-     action, log_prob = policy(obs)
-     next_obs, reward, done, info = env.step(action)
-     out.append((obs, next_obs, action, log_prob, reward, done))
-     obs = next_obs
+     tensordict = policy(tensordict)
+     tensordict = env.step(tensordict)
+     out.append(tensordict)
+     tensordict = step_mdp(tensordict)  # renames next_observation_* keys to observation_*
- obs, next_obs, action, log_prob, reward, done = [torch.stack(vals, 0) for vals in zip(*out)]
+ out = torch.stack(out, 0)  # TensorDict supports multiple tensor operations

Using this, TorchRL abstracts away the input / output signatures of the modules, env, collectors, replay buffers and losses of the library, allowing all primitives to be easily recycled across settings.

Code

Here's another example of an off-policy training loop in TorchRL (assuming that a data collector, a replay buffer, a loss and an optimizer have been instantiated):

- for i, (obs, next_obs, action, hidden_state, reward, done) in enumerate(collector):
+ for i, tensordict in enumerate(collector):
-     replay_buffer.add((obs, next_obs, action, log_prob, reward, done))
+     replay_buffer.add(tensordict)
    for j in range(num_optim_steps):
-         obs, next_obs, action, hidden_state, reward, done = replay_buffer.sample(batch_size)
-         loss = loss_fn(obs, next_obs, action, hidden_state, reward, done)
+         tensordict = replay_buffer.sample(batch_size)
+         loss = loss_fn(tensordict)
        loss.backward()
        optim.step()
        optim.zero_grad()

This training loop can be re-used across algorithms as it makes a minimal number of assumptions about the structure of the data.

TensorDict supports multiple tensor operations on its device and shape (the shape of TensorDict, or its batch size, is the common arbitrary N first dimensions of all its contained tensors):

Code
# stack and cat
tensordict = torch.stack(list_of_tensordicts, 0)
tensordict = torch.cat(list_of_tensordicts, 0)
# reshape
tensordict = tensordict.view(-1)
tensordict = tensordict.permute(0, 2, 1)
tensordict = tensordict.unsqueeze(-1)
tensordict = tensordict.squeeze(-1)
# indexing
tensordict = tensordict[:2]
tensordict[:, 2] = sub_tensordict
# device and memory location
tensordict.cuda()
tensordict.to("cuda:1")
tensordict.share_memory_()

TensorDict comes with a dedicated tensordict.nn module that contains everything you might need to write your model with it. And it is functorch and torch.compile compatible!

Code
transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
+ td_module = SafeModule(transformer_model, in_keys=["src", "tgt"], out_keys=["out"])
src = torch.rand((10, 32, 512))
tgt = torch.rand((20, 32, 512))
+ tensordict = TensorDict({"src": src, "tgt": tgt}, batch_size=[20, 32])
- out = transformer_model(src, tgt)
+ td_module(tensordict)
+ out = tensordict["out"]

The TensorDictSequential class allows to branch sequences of nn.Module instances in a highly modular way. For instance, here is an implementation of a transformer using the encoder and decoder blocks:

encoder_module = TransformerEncoder(...)
encoder = TensorDictSequential(encoder_module, in_keys=["src", "src_mask"], out_keys=["memory"])
decoder_module = TransformerDecoder(...)
decoder = TensorDictModule(decoder_module, in_keys=["tgt", "memory"], out_keys=["output"])
transformer = TensorDictSequential(encoder, decoder)
assert transformer.in_keys == ["src", "src_mask", "tgt"]
assert transformer.out_keys == ["memory", "output"]

TensorDictSequential allows to isolate subgraphs by querying a set of desired input / output keys:

transformer.select_subsequence(out_keys=["memory"])  # returns the encoder
transformer.select_subsequence(in_keys=["tgt", "memory"])  # returns the decoder

Check TensorDict tutorials to learn more!

Features

  • A common interface for environments which supports common libraries (OpenAI gym, deepmind control lab, etc.)(1) and state-less execution (e.g. Model-based environments). The batched environments containers allow parallel execution(2). A common PyTorch-first class of tensor-specification class is also provided. TorchRL's environments API is simple but stringent and specific. Check the documentation and tutorial to learn more!

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    env_parallel = ParallelEnv(4, env_make)  # creates 4 envs in parallel
    tensordict = env_parallel.rollout(max_steps=20, policy=None)  # random rollout (no policy given)
    assert tensordict.shape == [4, 20]  # 4 envs, 20 steps rollout
    env_parallel.action_spec.is_in(tensordict["action"])  # spec check returns True
    
  • multiprocess and distributed data collectors(2) that work synchronously or asynchronously. Through the use of TensorDict, TorchRL's training loops are made very similar to regular training loops in supervised learning (although the "dataloader" -- read data collector -- is modified on-the-fly):

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    collector = MultiaSyncDataCollector(
        [env_make, env_make],
        policy=policy,
        devices=["cuda:0", "cuda:0"],
        total_frames=10000,
        frames_per_batch=50,
        ...
    )
    for i, tensordict_data in enumerate(collector):
        loss = loss_module(tensordict_data)
        loss.backward()
        optim.step()
        optim.zero_grad()
        collector.update_policy_weights_()
    

    Check our distributed collector examples to learn more about ultra-fast data collection with TorchRL.

  • efficient(2) and generic(1) replay buffers with modularized storage:

    Code
    storage = LazyMemmapStorage(  # memory-mapped (physical) storage
        cfg.buffer_size,
        scratch_dir="/tmp/"
    )
    buffer = TensorDictPrioritizedReplayBuffer(
        alpha=0.7,
        beta=0.5,
        collate_fn=lambda x: x,
        pin_memory=device != torch.device("cpu"),
        prefetch=10,  # multi-threaded sampling
        storage=storage
    )
    

    Replay buffers are also offered as wrappers around common datasets for offline RL:

    Code
    from torchrl.data.replay_buffers import SamplerWithoutReplacement
    from torchrl.data.datasets.d4rl import D4RLExperienceReplay
    data = D4RLExperienceReplay(
        "maze2d-open-v0",
        split_trajs=True,
        batch_size=128,
        sampler=SamplerWithoutReplacement(drop_last=True),
    )
    for sample in data:  # or alternatively sample = data.sample()
        fun(sample)
    
  • cross-library environment transforms(1), executed on device and in a vectorized fashion(2), which process and prepare the data coming out of the environments to be used by the agent:

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    env_base = ParallelEnv(4, env_make, device="cuda:0")  # creates 4 envs in parallel
    env = TransformedEnv(
        env_base,
        Compose(
            ToTensorImage(),
            ObservationNorm(loc=0.5, scale=1.0)),  # executes the transforms once and on device
    )
    tensordict = env.reset()
    assert tensordict.device == torch.device("cuda:0")
    

    Other transforms include: reward scaling (RewardScaling), shape operations (concatenation of tensors, unsqueezing etc.), concatenation of successive operations (CatFrames), resizing (Resize) and many more.

    Unlike other libraries, the transforms are stacked as a list (and not wrapped in each other), which makes it easy to add and remove them at will:

    env.insert_transform(0, NoopResetEnv())  # inserts the NoopResetEnv transform at the index 0
    

    Nevertheless, transforms can access and execute operations on the parent environment:

    transform = env.transform[1]  # gathers the second transform of the list
    parent_env = transform.parent  # returns the base environment of the second transform, i.e. the base env + the first transform
    
  • various tools for distributed learning (e.g. memory mapped tensors)(2);

  • various architectures and models (e.g. actor-critic)(1):

    Code
    # create an nn.Module
    common_module = ConvNet(
        bias_last_layer=True,
        depth=None,
        num_cells=[32, 64, 64],
        kernel_sizes=[8, 4, 3],
        strides=[4, 2, 1],
    )
    # Wrap it in a SafeModule, indicating what key to read in and where to
    # write out the output
    common_module = SafeModule(
        common_module,
        in_keys=["pixels"],
        out_keys=["hidden"],
    )
    # Wrap the policy module in NormalParamsWrapper, such that the output
    # tensor is split in loc and scale, and scale is mapped onto a positive space
    policy_module = SafeModule(
        NormalParamsWrapper(
            MLP(num_cells=[64, 64], out_features=32, activation=nn.ELU)
        ),
        in_keys=["hidden"],
        out_keys=["loc", "scale"],
    )
    # Use a SafeProbabilisticTensorDictSequential to combine the SafeModule with a
    # SafeProbabilisticModule, indicating how to build the
    # torch.distribution.Distribution object and what to do with it
    policy_module = SafeProbabilisticTensorDictSequential(  # stochastic policy
        policy_module,
        SafeProbabilisticModule(
            in_keys=["loc", "scale"],
            out_keys="action",
            distribution_class=TanhNormal,
        ),
    )
    value_module = MLP(
        num_cells=[64, 64],
        out_features=1,
        activation=nn.ELU,
    )
    # Wrap the policy and value funciton in a common module
    actor_value = ActorValueOperator(common_module, policy_module, value_module)
    # standalone policy from this
    standalone_policy = actor_value.get_policy_operator()
    
  • exploration wrappers and modules to easily swap between exploration and exploitation(1):

    Code
    policy_explore = EGreedyWrapper(policy)
    with set_exploration_type(ExplorationType.RANDOM):
        tensordict = policy_explore(tensordict)  # will use eps-greedy
    with set_exploration_type(ExplorationType.MODE):
        tensordict = policy_explore(tensordict)  # will not use eps-greedy
    
  • A series of efficient loss modules and highly vectorized functional return and advantage computation.

    Code

    Loss modules

    from torchrl.objectives import DQNLoss
    loss_module = DQNLoss(value_network=value_network, gamma=0.99)
    tensordict = replay_buffer.sample(batch_size)
    loss = loss_module(tensordict)
    

    Advantage computation

    from torchrl.objectives.value.functional import vec_td_lambda_return_estimate
    advantage = vec_td_lambda_return_estimate(gamma, lmbda, next_state_value, reward, done, terminated)
    
  • a generic trainer class(1) that executes the aforementioned training loop. Through a hooking mechanism, it also supports any logging or data transformation operation at any given time.

  • various recipes to build models that correspond to the environment being deployed.

If you feel a feature is missing from the library, please submit an issue! If you would like to contribute to new features, check our call for contributions and our contribution page.

Examples, tutorials and demos

A series of examples are provided with an illustrative purpose:

and many more to come!

Check the examples directory for more details about handling the various configuration settings.

We also provide tutorials and demos that give a sense of what the library can do.

Citation

If you're using TorchRL, please refer to this BibTeX entry to cite this work:

@misc{bou2023torchrl,
      title={TorchRL: A data-driven decision-making library for PyTorch}, 
      author={Albert Bou and Matteo Bettini and Sebastian Dittert and Vikash Kumar and Shagun Sodhani and Xiaomeng Yang and Gianni De Fabritiis and Vincent Moens},
      year={2023},
      eprint={2306.00577},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Installation

Create a conda environment where the packages will be installed.

conda create --name torch_rl python=3.9
conda activate torch_rl

PyTorch

Depending on the use of functorch that you want to make, you may want to install the latest (nightly) PyTorch release or the latest stable version of PyTorch. See here for a detailed list of commands, including pip3 or other special installation instructions.

Torchrl

You can install the latest stable release by using

pip3 install torchrl

This should work on linux, Windows 10 and OsX (Intel or Silicon chips). On certain Windows machines (Windows 11), one should install the library locally (see below).

The nightly build can be installed via

pip3install torchrl-nightly

which we currently only ship for Linux and OsX (Intel) machines. Importantly, the nightly builds require the nightly builds of PyTorch too.

To install extra dependencies, call

pip3 install "torchrl[atari,dm_control,gym_continuous,rendering,tests,utils,marl,checkpointing]"

or a subset of these.

One may also desire to install the library locally. Three main reasons can motivate this:

  • the nightly/stable release isn't available for one's platform (eg, Windows 11, nightlies for Apple Silicon etc.);
  • contributing to the code;
  • install torchrl with a previous version of PyTorch (any version >= 2.0) (note that this should also be doable via a regular install followed by a downgrade to a previous pytorch version -- but the C++ binaries will not be available so some feature will not work,
    such as prioritized replay buffers and the like.)

To install the library locally, start by cloning the repo:

git clone https://github.com/pytorch/rl

and don't forget to check out the branch or tag you want to use for the build:

git checkout v0.4.0

Go to the directory where you have cloned the torchrl repo and install it (after installing ninja)

cd /path/to/torchrl/
pip3install ninja -U
python setup.py develop

One can also build the wheels to distribute to co-workers using

python setup.py bdist_wheel

Your wheels will be stored there ./dist/torchrl<name>.whl and installable via

pip install torchrl<name>.whl

Warning: Unfortunately, pip3 install -e . does not currently work. Contributions to help fix this are welcome!

On M1 machines, this should work out-of-the-box with the nightly build of PyTorch. If the generation of this artifact in MacOs M1 doesn't work correctly or in the execution the message (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64e')) appears, then try

ARCHFLAGS="-arch arm64" python setup.py develop

To run a quick sanity check, leave that directory (e.g. by executing cd ~/) and try to import the library.

python -c "import torchrl"

This should not return any warning or error.

Optional dependencies

The following libraries can be installed depending on the usage one wants to make of torchrl:

# diverse
pip3 install tqdm tensorboard "hydra-core>=1.1" hydra-submitit-launcher

# rendering
pip3 install moviepy

# deepmind control suite
pip3 install dm_control

# gym, atari games
pip3 install "gym[atari]" "gym[accept-rom-license]" pygame

# tests
pip3 install pytest pyyaml pytest-instafail

# tensorboard
pip3 install tensorboard

# wandb
pip3 install wandb

Troubleshooting

If a ModuleNotFoundError: No module named ‘torchrl._torchrl errors occurs (or a warning indicating that the C++ binaries could not be loaded), it means that the C++ extensions were not installed or not found.

  • One common reason might be that you are trying to import torchrl from within the git repo location. The following code snippet should return an error if torchrl has not been installed in develop mode:
    cd ~/path/to/rl/repo
    python -c 'from torchrl.envs.libs.gym import GymEnv'
    
    If this is the case, consider executing torchrl from another location.
  • If you're not importing torchrl from within its repo location, it could be caused by a problem during the local installation. Check the log after the python setup.py develop. One common cause is a g++/C++ version discrepancy and/or a problem with the ninja library.
  • If the problem persists, feel free to open an issue on the topic in the repo, we'll make our best to help!
  • On MacOs, we recommend installing XCode first. With Apple Silicon M1 chips, make sure you are using the arm64-built python (e.g. here). Running the following lines of code
    wget https://raw.githubusercontent.com/pytorch/pytorch/master/torch/utils/collect_env.py
    python collect_env.py
    
    should display
    OS: macOS *** (arm64)
    
    and not
    OS: macOS **** (x86_64)
    

Versioning issues can cause error message of the type undefined symbol and such. For these, refer to the versioning issues document for a complete explanation and proposed workarounds.

Asking a question

If you spot a bug in the library, please raise an issue in this repo.

If you have a more generic question regarding RL in PyTorch, post it on the PyTorch forum.

Contributing

Internal collaborations to torchrl are welcome! Feel free to fork, submit issues and PRs. You can checkout the detailed contribution guide here. As mentioned above, a list of open contributions can be found in here.

Contributors are recommended to install pre-commit hooks (using pre-commit install). pre-commit will check for linting related issues when the code is committed locally. You can disable th check by appending -n to your commit command: git commit -m <commit message> -n

Disclaimer

This library is released as a PyTorch beta feature. BC-breaking changes are likely to happen but they will be introduced with a deprecation warranty after a few release cycles.

License

TorchRL is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchrl_nightly-2024.8.1-cp312-cp312-win_amd64.whl (964.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

torchrl_nightly-2024.8.1-cp311-cp311-win_amd64.whl (963.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

torchrl_nightly-2024.8.1-cp310-cp310-win_amd64.whl (963.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

torchrl_nightly-2024.8.1-cp39-cp39-win_amd64.whl (961.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

torchrl_nightly-2024.8.1-cp38-cp38-win_amd64.whl (963.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

File details

Details for the file torchrl_nightly-2024.8.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 023042327e56726c02d5f6dc92723aa4f9c7745b548c70d8dad2953f6d7c2f4d
MD5 a844b8b3f17231e8bd7f945f64f7eb35
BLAKE2b-256 50c2d4fea94d6da15c9282c9878195862455369b989e6fb8974ec2de8bc499e9

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.1-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.1-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 05fea12dd5a34a9e2f9715da32d139c3bd4bbd86e2b7164b5d76358fc0a05a6f
MD5 c7af7f2ac20144f26583c3639363a62c
BLAKE2b-256 bdca3cf1a6c3e79d6173437c8418fd92938a51b6adad82cb6f5746af61f9651c

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 659422c11384643ed784c5ef115ba1a3a00d867c5b22f2c47df8d08357c0a77e
MD5 cfe4e477cd0723b9ec40c62f4672e063
BLAKE2b-256 e2c2b0af69243ca2416a813656d5b92f8ba12fb8fa6d1ced8191602b775445b6

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.1-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.1-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aee280612236a59c5fdbe33873528a42dcbba4830523ed1a855c81f6327ee716
MD5 4aeb91f213a8f9d487d707305ae10715
BLAKE2b-256 550c1b72c67daa925557b4f9daf8b28d83c30aab60c52a2e1a1c5716362afc6b

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 438cc4a11d312b5be12b1f5695929a3952336d1d089bacd80a6d1acd2eecc22c
MD5 49e1c09dca07353c7b5cc6ce7de505c7
BLAKE2b-256 b59184075ca0ea7cc2778d171e9a77b0eaceb1a0b927f746ebf49eb67dcff677

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.1-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.1-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2d5c78568a442f27389a13402cdf1c473a09440d78dea6a74a6014b9c28d97eb
MD5 a639ff3b716556128006e20b77c7dcc0
BLAKE2b-256 cbdf2d1143f2712801bfd5cd3c0ddb6b28ff0e84dc8df043444d48c2b640df67

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8cd1059b804c1c8cde213d042afbf240f1f7812912e56ac59a66aecba2966468
MD5 b38f2fd21bfa33806db299d260ab8bf3
BLAKE2b-256 e4c59e73690679ff7f8610327944ca3e26db930d34270651e54b01a736d62bad

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d9a13f4e88cf561a3371377e47542f79713be26df179299ce9001d654e586aa0
MD5 58306ee6c679edb4c287be2f9705591f
BLAKE2b-256 63a58c098f657ae628d8b3362bc10f32d05ae07bd2278ab1ce8b07490b275498

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4351390a7f02f284daa596f0f519812b6d11180e0aca7bda91a25d02527f8714
MD5 bf15a1702458eefd5e71088ed54fca8e
BLAKE2b-256 0be65a70af3119c12d181e999d22a573430a59c81c3805189aec56624bb2f183

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2728330061e3682f35ddbd681bf1632785cfe123348ba84842ab353e468227f2
MD5 c874f367a820565a976195c174e88133
BLAKE2b-256 c990975f62e17d2863811e54df879681d0661b18d3b86b3b79b329adad862740

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page