Skip to main content

No project description provided

Project description

Unit-tests Documentation Benchmarks codecov Twitter Follow Python version GitHub license pypi version pypi nightly version Downloads Downloads Discord Shield

TorchRL

Documentation | TensorDict | Features | Examples, tutorials and demos | Citation | Installation | Asking a question | Contributing

TorchRL is an open-source Reinforcement Learning (RL) library for PyTorch.

Key features

  • 🐍 Python-first: Designed with Python as the primary language for ease of use and flexibility
  • ⏱️ Efficient: Optimized for performance to support demanding RL research applications
  • 🧮 Modular, customizable, extensible: Highly modular architecture allows for easy swapping, transformation, or creation of new components
  • 📚 Documented: Thorough documentation ensures that users can quickly understand and utilize the library
  • Tested: Rigorously tested to ensure reliability and stability
  • ⚙️ Reusable functionals: Provides a set of highly reusable functions for cost functions, returns, and data processing

Design Principles

  • 🔥 Aligns with PyTorch ecosystem: Follows the structure and conventions of popular PyTorch libraries (e.g., dataset pillar, transforms, models, data utilities)
  • ➖ Minimal dependencies: Only requires Python standard library, NumPy, and PyTorch; optional dependencies for common environment libraries (e.g., OpenAI Gym) and datasets (D4RL, OpenX...)

Read the full paper for a more curated description of the library.

Getting started

Check our Getting Started tutorials for quickly ramp up with the basic features of the library!

Documentation and knowledge base

The TorchRL documentation can be found here. It contains tutorials and the API reference.

TorchRL also provides a RL knowledge base to help you debug your code, or simply learn the basics of RL. Check it out here.

We have some introductory videos for you to get to know the library better, check them out:

Spotlight publications

TorchRL being domain-agnostic, you can use it across many different fields. Here are a few examples:

  • ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery
  • BenchMARL: Benchmarking Multi-Agent Reinforcement Learning
  • BricksRL: A Platform for Democratizing Robotics and Reinforcement Learning Research and Education with LEGO
  • OmniDrones: An Efficient and Flexible Platform for Reinforcement Learning in Drone Control
  • RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark
  • Robohive: A unified framework for robot learning

Writing simplified and portable RL codebase with TensorDict

RL algorithms are very heterogeneous, and it can be hard to recycle a codebase across settings (e.g. from online to offline, from state-based to pixel-based learning). TorchRL solves this problem through TensorDict, a convenient data structure(1) that can be used to streamline one's RL codebase. With this tool, one can write a complete PPO training script in less than 100 lines of code!

Code
import torch
from tensordict.nn import TensorDictModule
from tensordict.nn.distributions import NormalParamExtractor
from torch import nn

from torchrl.collectors import SyncDataCollector
from torchrl.data.replay_buffers import TensorDictReplayBuffer, \
  LazyTensorStorage, SamplerWithoutReplacement
from torchrl.envs.libs.gym import GymEnv
from torchrl.modules import ProbabilisticActor, ValueOperator, TanhNormal
from torchrl.objectives import ClipPPOLoss
from torchrl.objectives.value import GAE

env = GymEnv("Pendulum-v1") 
model = TensorDictModule(
  nn.Sequential(
      nn.Linear(3, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 2),
      NormalParamExtractor()
  ),
  in_keys=["observation"],
  out_keys=["loc", "scale"]
)
critic = ValueOperator(
  nn.Sequential(
      nn.Linear(3, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 1),
  ),
  in_keys=["observation"],
)
actor = ProbabilisticActor(
  model,
  in_keys=["loc", "scale"],
  distribution_class=TanhNormal,
  distribution_kwargs={"low": -1.0, "high": 1.0},
  return_log_prob=True
  )
buffer = TensorDictReplayBuffer(
  storage=LazyTensorStorage(1000),
  sampler=SamplerWithoutReplacement(),
  batch_size=50,
  )
collector = SyncDataCollector(
  env,
  actor,
  frames_per_batch=1000,
  total_frames=1_000_000,
)
loss_fn = ClipPPOLoss(actor, critic)
adv_fn = GAE(value_network=critic, average_gae=True, gamma=0.99, lmbda=0.95)
optim = torch.optim.Adam(loss_fn.parameters(), lr=2e-4)

for data in collector:  # collect data
  for epoch in range(10):
      adv_fn(data)  # compute advantage
      buffer.extend(data)
      for sample in buffer:  # consume data
          loss_vals = loss_fn(sample)
          loss_val = sum(
              value for key, value in loss_vals.items() if
              key.startswith("loss")
              )
          loss_val.backward()
          optim.step()
          optim.zero_grad()
  print(f"avg reward: {data['next', 'reward'].mean().item(): 4.4f}")

Here is an example of how the environment API relies on tensordict to carry data from one function to another during a rollout execution: Alt Text

TensorDict makes it easy to re-use pieces of code across environments, models and algorithms.

Code

For instance, here's how to code a rollout in TorchRL:

- obs, done = env.reset()
+ tensordict = env.reset()
policy = SafeModule(
    model,
    in_keys=["observation_pixels", "observation_vector"],
    out_keys=["action"],
)
out = []
for i in range(n_steps):
-     action, log_prob = policy(obs)
-     next_obs, reward, done, info = env.step(action)
-     out.append((obs, next_obs, action, log_prob, reward, done))
-     obs = next_obs
+     tensordict = policy(tensordict)
+     tensordict = env.step(tensordict)
+     out.append(tensordict)
+     tensordict = step_mdp(tensordict)  # renames next_observation_* keys to observation_*
- obs, next_obs, action, log_prob, reward, done = [torch.stack(vals, 0) for vals in zip(*out)]
+ out = torch.stack(out, 0)  # TensorDict supports multiple tensor operations

Using this, TorchRL abstracts away the input / output signatures of the modules, env, collectors, replay buffers and losses of the library, allowing all primitives to be easily recycled across settings.

Code

Here's another example of an off-policy training loop in TorchRL (assuming that a data collector, a replay buffer, a loss and an optimizer have been instantiated):

- for i, (obs, next_obs, action, hidden_state, reward, done) in enumerate(collector):
+ for i, tensordict in enumerate(collector):
-     replay_buffer.add((obs, next_obs, action, log_prob, reward, done))
+     replay_buffer.add(tensordict)
    for j in range(num_optim_steps):
-         obs, next_obs, action, hidden_state, reward, done = replay_buffer.sample(batch_size)
-         loss = loss_fn(obs, next_obs, action, hidden_state, reward, done)
+         tensordict = replay_buffer.sample(batch_size)
+         loss = loss_fn(tensordict)
        loss.backward()
        optim.step()
        optim.zero_grad()

This training loop can be re-used across algorithms as it makes a minimal number of assumptions about the structure of the data.

TensorDict supports multiple tensor operations on its device and shape (the shape of TensorDict, or its batch size, is the common arbitrary N first dimensions of all its contained tensors):

Code
# stack and cat
tensordict = torch.stack(list_of_tensordicts, 0)
tensordict = torch.cat(list_of_tensordicts, 0)
# reshape
tensordict = tensordict.view(-1)
tensordict = tensordict.permute(0, 2, 1)
tensordict = tensordict.unsqueeze(-1)
tensordict = tensordict.squeeze(-1)
# indexing
tensordict = tensordict[:2]
tensordict[:, 2] = sub_tensordict
# device and memory location
tensordict.cuda()
tensordict.to("cuda:1")
tensordict.share_memory_()

TensorDict comes with a dedicated tensordict.nn module that contains everything you might need to write your model with it. And it is functorch and torch.compile compatible!

Code
transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
+ td_module = SafeModule(transformer_model, in_keys=["src", "tgt"], out_keys=["out"])
src = torch.rand((10, 32, 512))
tgt = torch.rand((20, 32, 512))
+ tensordict = TensorDict({"src": src, "tgt": tgt}, batch_size=[20, 32])
- out = transformer_model(src, tgt)
+ td_module(tensordict)
+ out = tensordict["out"]

The TensorDictSequential class allows to branch sequences of nn.Module instances in a highly modular way. For instance, here is an implementation of a transformer using the encoder and decoder blocks:

encoder_module = TransformerEncoder(...)
encoder = TensorDictSequential(encoder_module, in_keys=["src", "src_mask"], out_keys=["memory"])
decoder_module = TransformerDecoder(...)
decoder = TensorDictModule(decoder_module, in_keys=["tgt", "memory"], out_keys=["output"])
transformer = TensorDictSequential(encoder, decoder)
assert transformer.in_keys == ["src", "src_mask", "tgt"]
assert transformer.out_keys == ["memory", "output"]

TensorDictSequential allows to isolate subgraphs by querying a set of desired input / output keys:

transformer.select_subsequence(out_keys=["memory"])  # returns the encoder
transformer.select_subsequence(in_keys=["tgt", "memory"])  # returns the decoder

Check TensorDict tutorials to learn more!

Features

  • A common interface for environments which supports common libraries (OpenAI gym, deepmind control lab, etc.)(1) and state-less execution (e.g. Model-based environments). The batched environments containers allow parallel execution(2). A common PyTorch-first class of tensor-specification class is also provided. TorchRL's environments API is simple but stringent and specific. Check the documentation and tutorial to learn more!

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    env_parallel = ParallelEnv(4, env_make)  # creates 4 envs in parallel
    tensordict = env_parallel.rollout(max_steps=20, policy=None)  # random rollout (no policy given)
    assert tensordict.shape == [4, 20]  # 4 envs, 20 steps rollout
    env_parallel.action_spec.is_in(tensordict["action"])  # spec check returns True
    
  • multiprocess and distributed data collectors(2) that work synchronously or asynchronously. Through the use of TensorDict, TorchRL's training loops are made very similar to regular training loops in supervised learning (although the "dataloader" -- read data collector -- is modified on-the-fly):

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    collector = MultiaSyncDataCollector(
        [env_make, env_make],
        policy=policy,
        devices=["cuda:0", "cuda:0"],
        total_frames=10000,
        frames_per_batch=50,
        ...
    )
    for i, tensordict_data in enumerate(collector):
        loss = loss_module(tensordict_data)
        loss.backward()
        optim.step()
        optim.zero_grad()
        collector.update_policy_weights_()
    

    Check our distributed collector examples to learn more about ultra-fast data collection with TorchRL.

  • efficient(2) and generic(1) replay buffers with modularized storage:

    Code
    storage = LazyMemmapStorage(  # memory-mapped (physical) storage
        cfg.buffer_size,
        scratch_dir="/tmp/"
    )
    buffer = TensorDictPrioritizedReplayBuffer(
        alpha=0.7,
        beta=0.5,
        collate_fn=lambda x: x,
        pin_memory=device != torch.device("cpu"),
        prefetch=10,  # multi-threaded sampling
        storage=storage
    )
    

    Replay buffers are also offered as wrappers around common datasets for offline RL:

    Code
    from torchrl.data.replay_buffers import SamplerWithoutReplacement
    from torchrl.data.datasets.d4rl import D4RLExperienceReplay
    data = D4RLExperienceReplay(
        "maze2d-open-v0",
        split_trajs=True,
        batch_size=128,
        sampler=SamplerWithoutReplacement(drop_last=True),
    )
    for sample in data:  # or alternatively sample = data.sample()
        fun(sample)
    
  • cross-library environment transforms(1), executed on device and in a vectorized fashion(2), which process and prepare the data coming out of the environments to be used by the agent:

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    env_base = ParallelEnv(4, env_make, device="cuda:0")  # creates 4 envs in parallel
    env = TransformedEnv(
        env_base,
        Compose(
            ToTensorImage(),
            ObservationNorm(loc=0.5, scale=1.0)),  # executes the transforms once and on device
    )
    tensordict = env.reset()
    assert tensordict.device == torch.device("cuda:0")
    

    Other transforms include: reward scaling (RewardScaling), shape operations (concatenation of tensors, unsqueezing etc.), concatenation of successive operations (CatFrames), resizing (Resize) and many more.

    Unlike other libraries, the transforms are stacked as a list (and not wrapped in each other), which makes it easy to add and remove them at will:

    env.insert_transform(0, NoopResetEnv())  # inserts the NoopResetEnv transform at the index 0
    

    Nevertheless, transforms can access and execute operations on the parent environment:

    transform = env.transform[1]  # gathers the second transform of the list
    parent_env = transform.parent  # returns the base environment of the second transform, i.e. the base env + the first transform
    
  • various tools for distributed learning (e.g. memory mapped tensors)(2);

  • various architectures and models (e.g. actor-critic)(1):

    Code
    # create an nn.Module
    common_module = ConvNet(
        bias_last_layer=True,
        depth=None,
        num_cells=[32, 64, 64],
        kernel_sizes=[8, 4, 3],
        strides=[4, 2, 1],
    )
    # Wrap it in a SafeModule, indicating what key to read in and where to
    # write out the output
    common_module = SafeModule(
        common_module,
        in_keys=["pixels"],
        out_keys=["hidden"],
    )
    # Wrap the policy module in NormalParamsWrapper, such that the output
    # tensor is split in loc and scale, and scale is mapped onto a positive space
    policy_module = SafeModule(
        NormalParamsWrapper(
            MLP(num_cells=[64, 64], out_features=32, activation=nn.ELU)
        ),
        in_keys=["hidden"],
        out_keys=["loc", "scale"],
    )
    # Use a SafeProbabilisticTensorDictSequential to combine the SafeModule with a
    # SafeProbabilisticModule, indicating how to build the
    # torch.distribution.Distribution object and what to do with it
    policy_module = SafeProbabilisticTensorDictSequential(  # stochastic policy
        policy_module,
        SafeProbabilisticModule(
            in_keys=["loc", "scale"],
            out_keys="action",
            distribution_class=TanhNormal,
        ),
    )
    value_module = MLP(
        num_cells=[64, 64],
        out_features=1,
        activation=nn.ELU,
    )
    # Wrap the policy and value funciton in a common module
    actor_value = ActorValueOperator(common_module, policy_module, value_module)
    # standalone policy from this
    standalone_policy = actor_value.get_policy_operator()
    
  • exploration wrappers and modules to easily swap between exploration and exploitation(1):

    Code
    policy_explore = EGreedyWrapper(policy)
    with set_exploration_type(ExplorationType.RANDOM):
        tensordict = policy_explore(tensordict)  # will use eps-greedy
    with set_exploration_type(ExplorationType.DETERMINISTIC):
        tensordict = policy_explore(tensordict)  # will not use eps-greedy
    
  • A series of efficient loss modules and highly vectorized functional return and advantage computation.

    Code

    Loss modules

    from torchrl.objectives import DQNLoss
    loss_module = DQNLoss(value_network=value_network, gamma=0.99)
    tensordict = replay_buffer.sample(batch_size)
    loss = loss_module(tensordict)
    

    Advantage computation

    from torchrl.objectives.value.functional import vec_td_lambda_return_estimate
    advantage = vec_td_lambda_return_estimate(gamma, lmbda, next_state_value, reward, done, terminated)
    
  • a generic trainer class(1) that executes the aforementioned training loop. Through a hooking mechanism, it also supports any logging or data transformation operation at any given time.

  • various recipes to build models that correspond to the environment being deployed.

If you feel a feature is missing from the library, please submit an issue! If you would like to contribute to new features, check our call for contributions and our contribution page.

Examples, tutorials and demos

A series of examples are provided with an illustrative purpose:

and many more to come!

Check the examples directory for more details about handling the various configuration settings.

We also provide tutorials and demos that give a sense of what the library can do.

Citation

If you're using TorchRL, please refer to this BibTeX entry to cite this work:

@misc{bou2023torchrl,
      title={TorchRL: A data-driven decision-making library for PyTorch}, 
      author={Albert Bou and Matteo Bettini and Sebastian Dittert and Vikash Kumar and Shagun Sodhani and Xiaomeng Yang and Gianni De Fabritiis and Vincent Moens},
      year={2023},
      eprint={2306.00577},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Installation

Create a conda environment where the packages will be installed.

conda create --name torch_rl python=3.9
conda activate torch_rl

PyTorch

Depending on the use of functorch that you want to make, you may want to install the latest (nightly) PyTorch release or the latest stable version of PyTorch. See here for a detailed list of commands, including pip3 or other special installation instructions.

Torchrl

You can install the latest stable release by using

pip3 install torchrl

This should work on linux, Windows 10 and OsX (Intel or Silicon chips). On certain Windows machines (Windows 11), one should install the library locally (see below).

The nightly build can be installed via

pip3 install torchrl-nightly

which we currently only ship for Linux and OsX (Intel) machines. Importantly, the nightly builds require the nightly builds of PyTorch too.

To install extra dependencies, call

pip3 install "torchrl[atari,dm_control,gym_continuous,rendering,tests,utils,marl,checkpointing]"

or a subset of these.

One may also desire to install the library locally. Three main reasons can motivate this:

  • the nightly/stable release isn't available for one's platform (eg, Windows 11, nightlies for Apple Silicon etc.);
  • contributing to the code;
  • install torchrl with a previous version of PyTorch (any version >= 2.0) (note that this should also be doable via a regular install followed by a downgrade to a previous pytorch version -- but the C++ binaries will not be available so some feature will not work,
    such as prioritized replay buffers and the like.)

To install the library locally, start by cloning the repo:

git clone https://github.com/pytorch/rl

and don't forget to check out the branch or tag you want to use for the build:

git checkout v0.4.0

Go to the directory where you have cloned the torchrl repo and install it (after installing ninja)

cd /path/to/torchrl/
pip3 install ninja -U
python setup.py develop

One can also build the wheels to distribute to co-workers using

python setup.py bdist_wheel

Your wheels will be stored there ./dist/torchrl<name>.whl and installable via

pip install torchrl<name>.whl

Warning: Unfortunately, pip3 install -e . does not currently work. Contributions to help fix this are welcome!

On M1 machines, this should work out-of-the-box with the nightly build of PyTorch. If the generation of this artifact in MacOs M1 doesn't work correctly or in the execution the message (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64e')) appears, then try

ARCHFLAGS="-arch arm64" python setup.py develop

To run a quick sanity check, leave that directory (e.g. by executing cd ~/) and try to import the library.

python -c "import torchrl"

This should not return any warning or error.

Optional dependencies

The following libraries can be installed depending on the usage one wants to make of torchrl:

# diverse
pip3 install tqdm tensorboard "hydra-core>=1.1" hydra-submitit-launcher

# rendering
pip3 install moviepy

# deepmind control suite
pip3 install dm_control

# gym, atari games
pip3 install "gym[atari]" "gym[accept-rom-license]" pygame

# tests
pip3 install pytest pyyaml pytest-instafail

# tensorboard
pip3 install tensorboard

# wandb
pip3 install wandb

Troubleshooting

If a ModuleNotFoundError: No module named ‘torchrl._torchrl errors occurs (or a warning indicating that the C++ binaries could not be loaded), it means that the C++ extensions were not installed or not found.

  • One common reason might be that you are trying to import torchrl from within the git repo location. The following code snippet should return an error if torchrl has not been installed in develop mode:
    cd ~/path/to/rl/repo
    python -c 'from torchrl.envs.libs.gym import GymEnv'
    
    If this is the case, consider executing torchrl from another location.
  • If you're not importing torchrl from within its repo location, it could be caused by a problem during the local installation. Check the log after the python setup.py develop. One common cause is a g++/C++ version discrepancy and/or a problem with the ninja library.
  • If the problem persists, feel free to open an issue on the topic in the repo, we'll make our best to help!
  • On MacOs, we recommend installing XCode first. With Apple Silicon M1 chips, make sure you are using the arm64-built python (e.g. here). Running the following lines of code
    wget https://raw.githubusercontent.com/pytorch/pytorch/master/torch/utils/collect_env.py
    python collect_env.py
    
    should display
    OS: macOS *** (arm64)
    
    and not
    OS: macOS **** (x86_64)
    

Versioning issues can cause error message of the type undefined symbol and such. For these, refer to the versioning issues document for a complete explanation and proposed workarounds.

Asking a question

If you spot a bug in the library, please raise an issue in this repo.

If you have a more generic question regarding RL in PyTorch, post it on the PyTorch forum.

Contributing

Internal collaborations to torchrl are welcome! Feel free to fork, submit issues and PRs. You can checkout the detailed contribution guide here. As mentioned above, a list of open contributions can be found in here.

Contributors are recommended to install pre-commit hooks (using pre-commit install). pre-commit will check for linting related issues when the code is committed locally. You can disable th check by appending -n to your commit command: git commit -m <commit message> -n

Disclaimer

This library is released as a PyTorch beta feature. BC-breaking changes are likely to happen but they will be introduced with a deprecation warranty after a few release cycles.

License

TorchRL is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchrl_nightly-2024.8.23-cp312-cp312-win_amd64.whl (975.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

torchrl_nightly-2024.8.23-cp311-cp311-win_amd64.whl (975.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

torchrl_nightly-2024.8.23-cp310-cp310-win_amd64.whl (977.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

torchrl_nightly-2024.8.23-cp39-cp39-win_amd64.whl (974.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

torchrl_nightly-2024.8.23-cp38-cp38-win_amd64.whl (976.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

File details

Details for the file torchrl_nightly-2024.8.23-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.23-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 81c6d3a96b94e9239a0edba0515d66a671a075800e2cbfe5a97c112b7c14f597
MD5 deb0c827d407d42e610804f4271e032c
BLAKE2b-256 68defb00b7e714ead433883c5d027f0a206a9e8f223fddac42ebaf9874d8d885

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.23-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.23-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 48ee232f29730fcc2be400590e4b08cb7d55295ddf688af9d32829122cf973e5
MD5 c920cb4299134d9ac484493a3dcb7bdb
BLAKE2b-256 84e3ccbfcf845708f82f026a5937f035f2f9bf0f34680200604145370750d157

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.23-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.23-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 93c500bd8d3f3adfebba036b514144e3b67e9bffeb347299bd71df4bee30b9ae
MD5 ed86dfdd4be847bc86c20cbe847b3a55
BLAKE2b-256 17a47fa2aa27f328a9f2cffd7d1776c8a1a659537b38e4d15616b03a36c7da4a

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.23-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.23-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d6ec1d13d6befd17a13a5c9f19546e2a3984f8bb05a0628a55f4d4ffd853b12f
MD5 86c31e2737e9e7bc0aaf0d60414f1c41
BLAKE2b-256 49f24ff37d6bb6a4137f60c7e762278b52206d27dd74cf92cab78dfe6ca5c5a0

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.23-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.23-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 639cc611c593a665c2329755768338a4d55b21fcce0a8de34ac388889e3c8b14
MD5 d2121345c7c71eea6b22fbf24aee73a5
BLAKE2b-256 25246f5a5260624eff69a5b9cafdf8861d4703bf12ca038984050a9995905235

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.23-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.23-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ecd6e74e6980ed97459032b0aefe95d0a8c17596ac9c7670fe79ac2306e5f656
MD5 43d706767f7abd2bacb35c3dc6aa928a
BLAKE2b-256 59614d3b0ffcb5c0e80dde8435b81147c9300de52fb89bcaec5747d91027f1c4

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.23-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.23-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6db586c11a9356886afa9910114e5ebf25216ef566d9a3796ed7b16ec3d60789
MD5 61ac8fb58a501843286e5e0900d522d3
BLAKE2b-256 e69fbc6bf651d2f655ce750b529bf7003c03dcf3a579191e1186fefea04161e7

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.23-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.23-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 62f731e8cf0dc786a0a2ce9da29c68afcb10ee49fcd4464b82f63ffaed64d73d
MD5 0af9f2e9d23d75236516ae1717f39067
BLAKE2b-256 9a92199128db0a13d9986c86334ded508ecf06c4da518800dc801d329f8f5ede

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.23-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.23-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f7156e89c92c465dc4a8c66a4c904611d0cdb7c7793cae3d31543cf8e5f45837
MD5 458dbefa76298e895edda92bbb8909a7
BLAKE2b-256 b2ff6b7a3dc2f2061eb2d43fec5f72a2f9ea29bb9b4fe637054250252bdc1734

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.23-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.23-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 01fb65b0114ffe6121e987ac0357461311c49bfef50573ab4a2a84bf8fb54287
MD5 cb9c6e1fc18de07984886747df1d7c70
BLAKE2b-256 5a83fd1ef7cf861fc68d12b2794e86994455ce78f9e52ec48bc7e8b1f88b93cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page