Skip to main content

No project description provided

Project description

Unit-tests Documentation Benchmarks codecov Twitter Follow Python version GitHub license pypi version pypi nightly version Downloads Downloads Discord Shield

TorchRL

Documentation | TensorDict | Features | Examples, tutorials and demos | Citation | Installation | Asking a question | Contributing

TorchRL is an open-source Reinforcement Learning (RL) library for PyTorch.

Key features

  • 🐍 Python-first: Designed with Python as the primary language for ease of use and flexibility
  • ⏱️ Efficient: Optimized for performance to support demanding RL research applications
  • 🧮 Modular, customizable, extensible: Highly modular architecture allows for easy swapping, transformation, or creation of new components
  • 📚 Documented: Thorough documentation ensures that users can quickly understand and utilize the library
  • Tested: Rigorously tested to ensure reliability and stability
  • ⚙️ Reusable functionals: Provides a set of highly reusable functions for cost functions, returns, and data processing

Design Principles

  • 🔥 Aligns with PyTorch ecosystem: Follows the structure and conventions of popular PyTorch libraries (e.g., dataset pillar, transforms, models, data utilities)
  • ➖ Minimal dependencies: Only requires Python standard library, NumPy, and PyTorch; optional dependencies for common environment libraries (e.g., OpenAI Gym) and datasets (D4RL, OpenX...)

Read the full paper for a more curated description of the library.

Getting started

Check our Getting Started tutorials for quickly ramp up with the basic features of the library!

Documentation and knowledge base

The TorchRL documentation can be found here. It contains tutorials and the API reference.

TorchRL also provides a RL knowledge base to help you debug your code, or simply learn the basics of RL. Check it out here.

We have some introductory videos for you to get to know the library better, check them out:

Spotlight publications

TorchRL being domain-agnostic, you can use it across many different fields. Here are a few examples:

  • ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery
  • BenchMARL: Benchmarking Multi-Agent Reinforcement Learning
  • BricksRL: A Platform for Democratizing Robotics and Reinforcement Learning Research and Education with LEGO
  • OmniDrones: An Efficient and Flexible Platform for Reinforcement Learning in Drone Control
  • RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark
  • Robohive: A unified framework for robot learning

Writing simplified and portable RL codebase with TensorDict

RL algorithms are very heterogeneous, and it can be hard to recycle a codebase across settings (e.g. from online to offline, from state-based to pixel-based learning). TorchRL solves this problem through TensorDict, a convenient data structure(1) that can be used to streamline one's RL codebase. With this tool, one can write a complete PPO training script in less than 100 lines of code!

Code
import torch
from tensordict.nn import TensorDictModule
from tensordict.nn.distributions import NormalParamExtractor
from torch import nn

from torchrl.collectors import SyncDataCollector
from torchrl.data.replay_buffers import TensorDictReplayBuffer, \
  LazyTensorStorage, SamplerWithoutReplacement
from torchrl.envs.libs.gym import GymEnv
from torchrl.modules import ProbabilisticActor, ValueOperator, TanhNormal
from torchrl.objectives import ClipPPOLoss
from torchrl.objectives.value import GAE

env = GymEnv("Pendulum-v1") 
model = TensorDictModule(
  nn.Sequential(
      nn.Linear(3, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 2),
      NormalParamExtractor()
  ),
  in_keys=["observation"],
  out_keys=["loc", "scale"]
)
critic = ValueOperator(
  nn.Sequential(
      nn.Linear(3, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 1),
  ),
  in_keys=["observation"],
)
actor = ProbabilisticActor(
  model,
  in_keys=["loc", "scale"],
  distribution_class=TanhNormal,
  distribution_kwargs={"low": -1.0, "high": 1.0},
  return_log_prob=True
  )
buffer = TensorDictReplayBuffer(
  storage=LazyTensorStorage(1000),
  sampler=SamplerWithoutReplacement(),
  batch_size=50,
  )
collector = SyncDataCollector(
  env,
  actor,
  frames_per_batch=1000,
  total_frames=1_000_000,
)
loss_fn = ClipPPOLoss(actor, critic)
adv_fn = GAE(value_network=critic, average_gae=True, gamma=0.99, lmbda=0.95)
optim = torch.optim.Adam(loss_fn.parameters(), lr=2e-4)

for data in collector:  # collect data
  for epoch in range(10):
      adv_fn(data)  # compute advantage
      buffer.extend(data)
      for sample in buffer:  # consume data
          loss_vals = loss_fn(sample)
          loss_val = sum(
              value for key, value in loss_vals.items() if
              key.startswith("loss")
              )
          loss_val.backward()
          optim.step()
          optim.zero_grad()
  print(f"avg reward: {data['next', 'reward'].mean().item(): 4.4f}")

Here is an example of how the environment API relies on tensordict to carry data from one function to another during a rollout execution: Alt Text

TensorDict makes it easy to re-use pieces of code across environments, models and algorithms.

Code

For instance, here's how to code a rollout in TorchRL:

- obs, done = env.reset()
+ tensordict = env.reset()
policy = SafeModule(
    model,
    in_keys=["observation_pixels", "observation_vector"],
    out_keys=["action"],
)
out = []
for i in range(n_steps):
-     action, log_prob = policy(obs)
-     next_obs, reward, done, info = env.step(action)
-     out.append((obs, next_obs, action, log_prob, reward, done))
-     obs = next_obs
+     tensordict = policy(tensordict)
+     tensordict = env.step(tensordict)
+     out.append(tensordict)
+     tensordict = step_mdp(tensordict)  # renames next_observation_* keys to observation_*
- obs, next_obs, action, log_prob, reward, done = [torch.stack(vals, 0) for vals in zip(*out)]
+ out = torch.stack(out, 0)  # TensorDict supports multiple tensor operations

Using this, TorchRL abstracts away the input / output signatures of the modules, env, collectors, replay buffers and losses of the library, allowing all primitives to be easily recycled across settings.

Code

Here's another example of an off-policy training loop in TorchRL (assuming that a data collector, a replay buffer, a loss and an optimizer have been instantiated):

- for i, (obs, next_obs, action, hidden_state, reward, done) in enumerate(collector):
+ for i, tensordict in enumerate(collector):
-     replay_buffer.add((obs, next_obs, action, log_prob, reward, done))
+     replay_buffer.add(tensordict)
    for j in range(num_optim_steps):
-         obs, next_obs, action, hidden_state, reward, done = replay_buffer.sample(batch_size)
-         loss = loss_fn(obs, next_obs, action, hidden_state, reward, done)
+         tensordict = replay_buffer.sample(batch_size)
+         loss = loss_fn(tensordict)
        loss.backward()
        optim.step()
        optim.zero_grad()

This training loop can be re-used across algorithms as it makes a minimal number of assumptions about the structure of the data.

TensorDict supports multiple tensor operations on its device and shape (the shape of TensorDict, or its batch size, is the common arbitrary N first dimensions of all its contained tensors):

Code
# stack and cat
tensordict = torch.stack(list_of_tensordicts, 0)
tensordict = torch.cat(list_of_tensordicts, 0)
# reshape
tensordict = tensordict.view(-1)
tensordict = tensordict.permute(0, 2, 1)
tensordict = tensordict.unsqueeze(-1)
tensordict = tensordict.squeeze(-1)
# indexing
tensordict = tensordict[:2]
tensordict[:, 2] = sub_tensordict
# device and memory location
tensordict.cuda()
tensordict.to("cuda:1")
tensordict.share_memory_()

TensorDict comes with a dedicated tensordict.nn module that contains everything you might need to write your model with it. And it is functorch and torch.compile compatible!

Code
transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
+ td_module = SafeModule(transformer_model, in_keys=["src", "tgt"], out_keys=["out"])
src = torch.rand((10, 32, 512))
tgt = torch.rand((20, 32, 512))
+ tensordict = TensorDict({"src": src, "tgt": tgt}, batch_size=[20, 32])
- out = transformer_model(src, tgt)
+ td_module(tensordict)
+ out = tensordict["out"]

The TensorDictSequential class allows to branch sequences of nn.Module instances in a highly modular way. For instance, here is an implementation of a transformer using the encoder and decoder blocks:

encoder_module = TransformerEncoder(...)
encoder = TensorDictSequential(encoder_module, in_keys=["src", "src_mask"], out_keys=["memory"])
decoder_module = TransformerDecoder(...)
decoder = TensorDictModule(decoder_module, in_keys=["tgt", "memory"], out_keys=["output"])
transformer = TensorDictSequential(encoder, decoder)
assert transformer.in_keys == ["src", "src_mask", "tgt"]
assert transformer.out_keys == ["memory", "output"]

TensorDictSequential allows to isolate subgraphs by querying a set of desired input / output keys:

transformer.select_subsequence(out_keys=["memory"])  # returns the encoder
transformer.select_subsequence(in_keys=["tgt", "memory"])  # returns the decoder

Check TensorDict tutorials to learn more!

Features

  • A common interface for environments which supports common libraries (OpenAI gym, deepmind control lab, etc.)(1) and state-less execution (e.g. Model-based environments). The batched environments containers allow parallel execution(2). A common PyTorch-first class of tensor-specification class is also provided. TorchRL's environments API is simple but stringent and specific. Check the documentation and tutorial to learn more!

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    env_parallel = ParallelEnv(4, env_make)  # creates 4 envs in parallel
    tensordict = env_parallel.rollout(max_steps=20, policy=None)  # random rollout (no policy given)
    assert tensordict.shape == [4, 20]  # 4 envs, 20 steps rollout
    env_parallel.action_spec.is_in(tensordict["action"])  # spec check returns True
    
  • multiprocess and distributed data collectors(2) that work synchronously or asynchronously. Through the use of TensorDict, TorchRL's training loops are made very similar to regular training loops in supervised learning (although the "dataloader" -- read data collector -- is modified on-the-fly):

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    collector = MultiaSyncDataCollector(
        [env_make, env_make],
        policy=policy,
        devices=["cuda:0", "cuda:0"],
        total_frames=10000,
        frames_per_batch=50,
        ...
    )
    for i, tensordict_data in enumerate(collector):
        loss = loss_module(tensordict_data)
        loss.backward()
        optim.step()
        optim.zero_grad()
        collector.update_policy_weights_()
    

    Check our distributed collector examples to learn more about ultra-fast data collection with TorchRL.

  • efficient(2) and generic(1) replay buffers with modularized storage:

    Code
    storage = LazyMemmapStorage(  # memory-mapped (physical) storage
        cfg.buffer_size,
        scratch_dir="/tmp/"
    )
    buffer = TensorDictPrioritizedReplayBuffer(
        alpha=0.7,
        beta=0.5,
        collate_fn=lambda x: x,
        pin_memory=device != torch.device("cpu"),
        prefetch=10,  # multi-threaded sampling
        storage=storage
    )
    

    Replay buffers are also offered as wrappers around common datasets for offline RL:

    Code
    from torchrl.data.replay_buffers import SamplerWithoutReplacement
    from torchrl.data.datasets.d4rl import D4RLExperienceReplay
    data = D4RLExperienceReplay(
        "maze2d-open-v0",
        split_trajs=True,
        batch_size=128,
        sampler=SamplerWithoutReplacement(drop_last=True),
    )
    for sample in data:  # or alternatively sample = data.sample()
        fun(sample)
    
  • cross-library environment transforms(1), executed on device and in a vectorized fashion(2), which process and prepare the data coming out of the environments to be used by the agent:

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    env_base = ParallelEnv(4, env_make, device="cuda:0")  # creates 4 envs in parallel
    env = TransformedEnv(
        env_base,
        Compose(
            ToTensorImage(),
            ObservationNorm(loc=0.5, scale=1.0)),  # executes the transforms once and on device
    )
    tensordict = env.reset()
    assert tensordict.device == torch.device("cuda:0")
    

    Other transforms include: reward scaling (RewardScaling), shape operations (concatenation of tensors, unsqueezing etc.), concatenation of successive operations (CatFrames), resizing (Resize) and many more.

    Unlike other libraries, the transforms are stacked as a list (and not wrapped in each other), which makes it easy to add and remove them at will:

    env.insert_transform(0, NoopResetEnv())  # inserts the NoopResetEnv transform at the index 0
    

    Nevertheless, transforms can access and execute operations on the parent environment:

    transform = env.transform[1]  # gathers the second transform of the list
    parent_env = transform.parent  # returns the base environment of the second transform, i.e. the base env + the first transform
    
  • various tools for distributed learning (e.g. memory mapped tensors)(2);

  • various architectures and models (e.g. actor-critic)(1):

    Code
    # create an nn.Module
    common_module = ConvNet(
        bias_last_layer=True,
        depth=None,
        num_cells=[32, 64, 64],
        kernel_sizes=[8, 4, 3],
        strides=[4, 2, 1],
    )
    # Wrap it in a SafeModule, indicating what key to read in and where to
    # write out the output
    common_module = SafeModule(
        common_module,
        in_keys=["pixels"],
        out_keys=["hidden"],
    )
    # Wrap the policy module in NormalParamsWrapper, such that the output
    # tensor is split in loc and scale, and scale is mapped onto a positive space
    policy_module = SafeModule(
        NormalParamsWrapper(
            MLP(num_cells=[64, 64], out_features=32, activation=nn.ELU)
        ),
        in_keys=["hidden"],
        out_keys=["loc", "scale"],
    )
    # Use a SafeProbabilisticTensorDictSequential to combine the SafeModule with a
    # SafeProbabilisticModule, indicating how to build the
    # torch.distribution.Distribution object and what to do with it
    policy_module = SafeProbabilisticTensorDictSequential(  # stochastic policy
        policy_module,
        SafeProbabilisticModule(
            in_keys=["loc", "scale"],
            out_keys="action",
            distribution_class=TanhNormal,
        ),
    )
    value_module = MLP(
        num_cells=[64, 64],
        out_features=1,
        activation=nn.ELU,
    )
    # Wrap the policy and value funciton in a common module
    actor_value = ActorValueOperator(common_module, policy_module, value_module)
    # standalone policy from this
    standalone_policy = actor_value.get_policy_operator()
    
  • exploration wrappers and modules to easily swap between exploration and exploitation(1):

    Code
    policy_explore = EGreedyWrapper(policy)
    with set_exploration_type(ExplorationType.RANDOM):
        tensordict = policy_explore(tensordict)  # will use eps-greedy
    with set_exploration_type(ExplorationType.DETERMINISTIC):
        tensordict = policy_explore(tensordict)  # will not use eps-greedy
    
  • A series of efficient loss modules and highly vectorized functional return and advantage computation.

    Code

    Loss modules

    from torchrl.objectives import DQNLoss
    loss_module = DQNLoss(value_network=value_network, gamma=0.99)
    tensordict = replay_buffer.sample(batch_size)
    loss = loss_module(tensordict)
    

    Advantage computation

    from torchrl.objectives.value.functional import vec_td_lambda_return_estimate
    advantage = vec_td_lambda_return_estimate(gamma, lmbda, next_state_value, reward, done, terminated)
    
  • a generic trainer class(1) that executes the aforementioned training loop. Through a hooking mechanism, it also supports any logging or data transformation operation at any given time.

  • various recipes to build models that correspond to the environment being deployed.

If you feel a feature is missing from the library, please submit an issue! If you would like to contribute to new features, check our call for contributions and our contribution page.

Examples, tutorials and demos

A series of examples are provided with an illustrative purpose:

and many more to come!

Check the examples directory for more details about handling the various configuration settings.

We also provide tutorials and demos that give a sense of what the library can do.

Citation

If you're using TorchRL, please refer to this BibTeX entry to cite this work:

@misc{bou2023torchrl,
      title={TorchRL: A data-driven decision-making library for PyTorch}, 
      author={Albert Bou and Matteo Bettini and Sebastian Dittert and Vikash Kumar and Shagun Sodhani and Xiaomeng Yang and Gianni De Fabritiis and Vincent Moens},
      year={2023},
      eprint={2306.00577},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Installation

Create a conda environment where the packages will be installed.

conda create --name torch_rl python=3.9
conda activate torch_rl

PyTorch

Depending on the use of functorch that you want to make, you may want to install the latest (nightly) PyTorch release or the latest stable version of PyTorch. See here for a detailed list of commands, including pip3 or other special installation instructions.

Torchrl

You can install the latest stable release by using

pip3 install torchrl

This should work on linux, Windows 10 and OsX (Intel or Silicon chips). On certain Windows machines (Windows 11), one should install the library locally (see below).

The nightly build can be installed via

pip3 install torchrl-nightly

which we currently only ship for Linux and OsX (Intel) machines. Importantly, the nightly builds require the nightly builds of PyTorch too.

To install extra dependencies, call

pip3 install "torchrl[atari,dm_control,gym_continuous,rendering,tests,utils,marl,checkpointing]"

or a subset of these.

One may also desire to install the library locally. Three main reasons can motivate this:

  • the nightly/stable release isn't available for one's platform (eg, Windows 11, nightlies for Apple Silicon etc.);
  • contributing to the code;
  • install torchrl with a previous version of PyTorch (any version >= 2.0) (note that this should also be doable via a regular install followed by a downgrade to a previous pytorch version -- but the C++ binaries will not be available so some feature will not work,
    such as prioritized replay buffers and the like.)

To install the library locally, start by cloning the repo:

git clone https://github.com/pytorch/rl

and don't forget to check out the branch or tag you want to use for the build:

git checkout v0.4.0

Go to the directory where you have cloned the torchrl repo and install it (after installing ninja)

cd /path/to/torchrl/
pip3 install ninja -U
python setup.py develop

One can also build the wheels to distribute to co-workers using

python setup.py bdist_wheel

Your wheels will be stored there ./dist/torchrl<name>.whl and installable via

pip install torchrl<name>.whl

Warning: Unfortunately, pip3 install -e . does not currently work. Contributions to help fix this are welcome!

On M1 machines, this should work out-of-the-box with the nightly build of PyTorch. If the generation of this artifact in MacOs M1 doesn't work correctly or in the execution the message (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64e')) appears, then try

ARCHFLAGS="-arch arm64" python setup.py develop

To run a quick sanity check, leave that directory (e.g. by executing cd ~/) and try to import the library.

python -c "import torchrl"

This should not return any warning or error.

Optional dependencies

The following libraries can be installed depending on the usage one wants to make of torchrl:

# diverse
pip3 install tqdm tensorboard "hydra-core>=1.1" hydra-submitit-launcher

# rendering
pip3 install moviepy

# deepmind control suite
pip3 install dm_control

# gym, atari games
pip3 install "gym[atari]" "gym[accept-rom-license]" pygame

# tests
pip3 install pytest pyyaml pytest-instafail

# tensorboard
pip3 install tensorboard

# wandb
pip3 install wandb

Troubleshooting

If a ModuleNotFoundError: No module named ‘torchrl._torchrl errors occurs (or a warning indicating that the C++ binaries could not be loaded), it means that the C++ extensions were not installed or not found.

  • One common reason might be that you are trying to import torchrl from within the git repo location. The following code snippet should return an error if torchrl has not been installed in develop mode:
    cd ~/path/to/rl/repo
    python -c 'from torchrl.envs.libs.gym import GymEnv'
    
    If this is the case, consider executing torchrl from another location.
  • If you're not importing torchrl from within its repo location, it could be caused by a problem during the local installation. Check the log after the python setup.py develop. One common cause is a g++/C++ version discrepancy and/or a problem with the ninja library.
  • If the problem persists, feel free to open an issue on the topic in the repo, we'll make our best to help!
  • On MacOs, we recommend installing XCode first. With Apple Silicon M1 chips, make sure you are using the arm64-built python (e.g. here). Running the following lines of code
    wget https://raw.githubusercontent.com/pytorch/pytorch/master/torch/utils/collect_env.py
    python collect_env.py
    
    should display
    OS: macOS *** (arm64)
    
    and not
    OS: macOS **** (x86_64)
    

Versioning issues can cause error message of the type undefined symbol and such. For these, refer to the versioning issues document for a complete explanation and proposed workarounds.

Asking a question

If you spot a bug in the library, please raise an issue in this repo.

If you have a more generic question regarding RL in PyTorch, post it on the PyTorch forum.

Contributing

Internal collaborations to torchrl are welcome! Feel free to fork, submit issues and PRs. You can checkout the detailed contribution guide here. As mentioned above, a list of open contributions can be found in here.

Contributors are recommended to install pre-commit hooks (using pre-commit install). pre-commit will check for linting related issues when the code is committed locally. You can disable th check by appending -n to your commit command: git commit -m <commit message> -n

Disclaimer

This library is released as a PyTorch beta feature. BC-breaking changes are likely to happen but they will be introduced with a deprecation warranty after a few release cycles.

License

TorchRL is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchrl_nightly-2024.8.29-cp312-cp312-win_amd64.whl (976.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

torchrl_nightly-2024.8.29-cp311-cp311-win_amd64.whl (976.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

torchrl_nightly-2024.8.29-cp310-cp310-win_amd64.whl (977.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

torchrl_nightly-2024.8.29-cp39-cp39-win_amd64.whl (975.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

torchrl_nightly-2024.8.29-cp38-cp38-win_amd64.whl (977.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

File details

Details for the file torchrl_nightly-2024.8.29-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.29-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7ece032d25f8e0fd385ad6d851ad329f273193126afcab2c564c76237a94f2c6
MD5 ef0c6053b666f3d847f9877b4a2ae61e
BLAKE2b-256 2b5708b6f841341a5c369e7df02c9c501d2da5c57b9a653bf83ff35a36956956

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.29-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.29-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6e4e029030ab493f23358944017227455f18a9a750198ac2da4526ae6eebec89
MD5 5eaad133ba883c4be39f0bb972bf1001
BLAKE2b-256 a33297b25ee15e6fc802ca829fa98c44819bf9cbd9878b6bff28e6b795987ad4

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.29-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.29-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3ec230114e83c0bafcd52dcef07eb5b18cbe0035bdde21f590c9824b3e341228
MD5 c2ae320765e6fea7d997b04608b7dd82
BLAKE2b-256 a1920312a105ca8895a865f2208aa525be232ef4274ea51a562e34c92f85da65

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.29-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.29-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 98eed7f6dbe8894b98a564506be8f2d5eb8990d231c49bab7717ca9e15805102
MD5 27418b39b747815c3ddb17eda990a1e2
BLAKE2b-256 56d116a470ee8939a748c4fdd68759e76186957bc80e6c809e6ff24c43fe8720

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.29-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.29-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5924da5b8416cbe4a286de00f4555addb500815f8d767e798f134e68cff26335
MD5 645843ee66df91a7c03013549abad6f0
BLAKE2b-256 8a2dbde6f098fb02475d5d7b6f6aa2153210a10fd0e72fa0564ffa7e8e42d6e5

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.29-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.29-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7f35ff389fa1df4e51c49147cffc8b0bae638417158e7d37fb8f951dedf4e564
MD5 7bce33ccd15b1c97933154c610483df7
BLAKE2b-256 2486a519e2ca4053641bea717d9772a22298413f8e673e2a33dff21b8a5ad748

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.29-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.29-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e927954fda71a9c360d012e367b302939532fc70a355b59fb62bdd520c74d336
MD5 314f3414147f825627cb1895d1f66b74
BLAKE2b-256 02974fa46364f346a6e0cac034b9716d8fbad318800f3032106423c37f97623b

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.29-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.29-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2b14f0746297746eddd4560963b246b5d168023e6041aad2cba15fbfd2776639
MD5 0153b902c8abcbb31123cec4421718bd
BLAKE2b-256 d2501402986de487c5c5a402e3a7cefe3eade4c1aee95268f07b221446b025ea

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.29-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.29-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 99cdb4cd1ff57fce50d2169779b2c5db2534a0905237cb08bb564276842b014c
MD5 426b32455a5b126c10f2755b2ec02015
BLAKE2b-256 3ab904f3824f6c9f43b1fc71fbb58373db2b8845ad69d0c1ebf26c6b0982980d

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.29-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.29-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4e139431dfeaa90ec344e9a2270fd598d73c359f3317bb4e417ee44285da0176
MD5 305a981c7d150682e43a32c5568603a9
BLAKE2b-256 229ef2ceeff79d4cd883eec12d543101626745417ae5a5223b247db6125a76a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page