Skip to main content

SDE solvers and stochastic adjoint sensitivity analysis in PyTorch.

Project description

PyTorch Implementation of Differentiable SDE Solvers Python package

This library provides stochastic differential equation (SDE) solvers with GPU support and efficient backpropagation.


Installation

pip install torchsde

Requirements: Python >=3.8 and PyTorch >=1.6.0.

Documentation

Available here.

Examples

Quick example

import torch
import torchsde

batch_size, state_size, brownian_size = 32, 3, 2
t_size = 20

class SDE(torch.nn.Module):
    noise_type = 'general'
    sde_type = 'ito'

    def __init__(self):
        super().__init__()
        self.mu = torch.nn.Linear(state_size, 
                                  state_size)
        self.sigma = torch.nn.Linear(state_size, 
                                     state_size * brownian_size)

    # Drift
    def f(self, t, y):
        return self.mu(y)  # shape (batch_size, state_size)

    # Diffusion
    def g(self, t, y):
        return self.sigma(y).view(batch_size, 
                                  state_size, 
                                  brownian_size)

sde = SDE()
y0 = torch.full((batch_size, state_size), 0.1)
ts = torch.linspace(0, 1, t_size)
# Initial state y0, the SDE is solved over the interval [ts[0], ts[-1]].
# ys will have shape (t_size, batch_size, state_size)
ys = torchsde.sdeint(sde, y0, ts)

Notebook

examples/demo.ipynb gives a short guide on how to solve SDEs, including subtle points such as fixing the randomness in the solver and the choice of noise types.

Latent SDE

examples/latent_sde.py learns a latent stochastic differential equation, as in Section 5 of [1]. The example fits an SDE to data, whilst regularizing it to be like an Ornstein-Uhlenbeck prior process. The model can be loosely viewed as a variational autoencoder with its prior and approximate posterior being SDEs. This example can be run via

python -m examples.latent_sde --train-dir <TRAIN_DIR>

The program outputs figures to the path specified by <TRAIN_DIR>. Training should stabilize after 500 iterations with the default hyperparameters.

Neural SDEs as GANs

examples/sde_gan.py learns an SDE as a GAN, as in [2], [3]. The example trains an SDE as the generator of a GAN, whilst using a neural CDE [4] as the discriminator. This example can be run via

python -m examples.sde_gan

Citation

If you found this codebase useful in your research, please consider citing either or both of:

@article{li2020scalable,
  title={Scalable gradients for stochastic differential equations},
  author={Li, Xuechen and Wong, Ting-Kam Leonard and Chen, Ricky T. Q. and Duvenaud, David},
  journal={International Conference on Artificial Intelligence and Statistics},
  year={2020}
}
@article{kidger2021neuralsde,
  title={Neural {SDE}s as {I}nfinite-{D}imensional {GAN}s},
  author={Kidger, Patrick and Foster, James and Li, Xuechen and Oberhauser, Harald and Lyons, Terry},
  journal={International Conference on Machine Learning},
  year={2021}
}

References

[1] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud. "Scalable Gradients for Stochastic Differential Equations". International Conference on Artificial Intelligence and Statistics. 2020. [arXiv]

[2] Patrick Kidger, James Foster, Xuechen Li, Harald Oberhauser, Terry Lyons. "Neural SDEs as Infinite-Dimensional GANs". International Conference on Machine Learning 2021. [arXiv]

[3] Patrick Kidger, James Foster, Xuechen Li, Terry Lyons. "Efficient and Accurate Gradients for Neural SDEs". 2021. [arXiv]

[4] Patrick Kidger, James Morrill, James Foster, Terry Lyons, "Neural Controlled Differential Equations for Irregular Time Series". Neural Information Processing Systems 2020. [arXiv]


This is a research project, not an official Google product.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchsde-0.2.6.tar.gz (48.8 kB view details)

Uploaded Source

Built Distribution

torchsde-0.2.6-py3-none-any.whl (61.2 kB view details)

Uploaded Python 3

File details

Details for the file torchsde-0.2.6.tar.gz.

File metadata

  • Download URL: torchsde-0.2.6.tar.gz
  • Upload date:
  • Size: 48.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for torchsde-0.2.6.tar.gz
Algorithm Hash digest
SHA256 81d074d3504f9d190f1694fb526395afbe4608ee43a88adb1262a639e5b4778b
MD5 6bfa639eaa8a814b4d738d13a4df6481
BLAKE2b-256 71a5ae18ee6de023b3a5462122a43a4c9812c11d275cc585a3d08bf24945c02a

See more details on using hashes here.

File details

Details for the file torchsde-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: torchsde-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 61.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for torchsde-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 19bf7ff02eec7e8e46ba1cdb4aa0f9db1c51d492524a16975234b467f7fc463b
MD5 ba08fc9429b21ce19b84efad7bbc6238
BLAKE2b-256 dd1fb67ebd7e19ffe259f05d3cf4547326725c3113d640c277030be3e9998d6f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page