Pytorch stain normalization utils
Project description
torchstain
Pytorch-compatible normalization tools for histopathological images. Normalization algorithms currently implemented:
- Macenko et al. [1] (ported from numpy implementation)
Installation
pip3 install torchstain
Example Usage
import torch
from torchvision import transforms
import torchstain
import cv2
target = cv2.cvtColor(cv2.imread("./data/target.png"), cv2.COLOR_BGR2RGB)
to_transform = cv2.cvtColor(cv2.imread("./data/source.png"), cv2.COLOR_BGR2RGB)
T = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: x*255)
])
torch_normalizer = torchstain.MacenkoNormalizer(backend='torch')
torch_normalizer.fit(T(target))
t_to_transform = T(to_transform)
norm, H, E = normalizer.normalize(I=t_to_transform, stains=True)
Backend comparison
Results with 10 runs per size on a Intel(R) Core(TM) i5-8365U CPU @ 1.60GHz
size | numpy avg. time | numpy tot. time | torch avg. time | torch tot. time |
---|---|---|---|---|
224x224 | 0.0323s ± 0.0032 | 0.3231s | 0.0234s ± 0.0384 | 0.2340s |
448x448 | 0.1228s ± 0.0042 | 1.2280s | 0.0395s ± 0.0168 | 0.3954s |
672x672 | 0.2653s ± 0.0106 | 2.6534s | 0.0753s ± 0.0157 | 0.7527s |
896x896 | 0.4940s ± 0.0208 | 4.9397s | 0.1262s ± 0.0159 | 1.2622s |
1120x1120 | 0.6888s ± 0.0081 | 6.8883s | 0.2002s ± 0.0141 | 2.0021s |
1344x1344 | 1.0145s ± 0.0089 | 10.1448s | 0.2703s ± 0.0136 | 2.7026s |
1568x1568 | 1.2620s ± 0.0133 | 12.6200s | 0.3680s ± 0.0128 | 3.6795s |
1792x1792 | 1.4289s ± 0.0128 | 14.2886s | 0.5968s ± 0.0160 | 5.9676s |
Reference
- [1] Macenko, Marc, et al. "A method for normalizing histology slides for quantitative analysis." 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, 2009.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchstain-1.1.0.tar.gz
(7.3 kB
view details)
Built Distribution
File details
Details for the file torchstain-1.1.0.tar.gz
.
File metadata
- Download URL: torchstain-1.1.0.tar.gz
- Upload date:
- Size: 7.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e9d39cbb1170185166cfafefb4df83c8ce1c1ca6fa67a0ccbd4eacae3afcd7c2 |
|
MD5 | 4c4fab87204c3e2faaf0b6723252a69c |
|
BLAKE2b-256 | e80dbd570149fc2726d52e5eec8945be08912e6e40a78b50457bdf6881f59a0b |
File details
Details for the file torchstain-1.1.0-py3-none-any.whl
.
File metadata
- Download URL: torchstain-1.1.0-py3-none-any.whl
- Upload date:
- Size: 9.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 03f7a71214707137156738183bec4edf4afdb54cbe18023ce501fec729ea11e2 |
|
MD5 | 48bc9acd5ff2053eec136e0fe53ee4a2 |
|
BLAKE2b-256 | 84a9cf9fcda1871dbd8540a74ddab7030b16465410a188324b5dfa706336996c |