Skip to main content

A small tool for PyTorch training

Project description

🔥 torchtrain 💪

A small tool for PyTorch training.

Features

  • Avoid boilerplate code for training.
  • Stepwise training.
  • Automatic TensorBoard logging, and tqdm bar.
  • Count model parameters and save hyperparameters.
  • DataParallel.
  • Early stop.
  • Save and load checkpoint. Continue training.
  • Catch out of memory exceptions to avoid breaking training.
  • Gradient accumulation.
  • Gradient clipping.
  • Only run few epochs, steps and batches for code test.

Install

pip install torchtrain

Example

Check doc string of Trainer class for detailed configurations.

An incomplete minimal example:

data_iter = get_data()
model = Bert()
optimizer = Adam(model.parameters(), lr=cfg["lr"])
criteria = {"loss": AverageAggregator(BCELoss())}
trainer = Trainer(model, data_iter, criteria, cfg, optimizer)
trainer.train(stepwise=True)

Or this version:

from argparse import ArgumentParser

from sklearn.model_selection import ParameterGrid
from torch.optim import Adam
from torch.optim.lr_scheduler import LambdaLR
from transformers import AutoModel, BertTokenizer

from data.load import get_batch_size, get_data
from metrics import BCELoss
from models import BertSumExt
from torchtrain import Trainer
from torchtrain.metrics import AverageAggregator
from torchtrain.utils import set_random_seeds


def get_args():
    parser = ArgumentParser()
    parser.add_argument("--seed", type=int, default=233666)
    parser.add_argument("--run_ckp", default="")
    parser.add_argument("--run_dataset", default="val")
    parser.add_argument("--batch_size", type=int, default=64)
    parser.add_argument("--warmup", type=int, default=10000)
    parser.add_argument("--stepwise", action="store_false")
    # torchtrain cfgs
    parser.add_argument("--max_n", type=int, default=50000)
    parser.add_argument("--val_step", type=int, default=1000)
    parser.add_argument("--save_path", default="/tmp/runs")
    parser.add_argument("--model_name", default="BertSumExt")
    parser.add_argument("--cuda_list", default="2,3")
    parser.add_argument("--grad_accum_batch", type=int, default=1)
    parser.add_argument("--train_few", action="store_true")
    return vars(parser.parse_args())


def get_param_grid():
    param_grid = [
        {"pretrained_model_name": ["voidful/albert_chinese_tiny"], "lr": [6e-5]},
    ]
    return ParameterGrid(param_grid)


def get_cfg(args={}, params={}):
    cfg = {**args, **params}
    # other cfgs
    return cfg


def run(cfg):
    set_random_seeds(cfg["seed"])
    tokenizer = BertTokenizer.from_pretrained(cfg["pretrained_model_name"])
    bert = AutoModel.from_pretrained(cfg["pretrained_model_name"])
    data_iter = get_data(
        cfg["batch_size"], tokenizer, bert.config.max_position_embeddings
    )
    model = BertSumExt(bert)
    optimizer = Adam(model.parameters(), lr=cfg["lr"])
    scheduler = LambdaLR(
        optimizer,
        lambda step: min(step ** (-0.5), step * (cfg["warmup"] ** (-1.5)))
        if step > 0
        else 0,
    )
    criteria = {"loss": AverageAggregator(BCELoss())}
    trainer = Trainer(
        model,
        data_iter,
        criteria,
        cfg,
        optimizer,
        scheduler,
        get_batch_size=get_batch_size,
    )
    if cfg["run_ckp"]:
        return trainer.test(cfg["run_ckp"], cfg["run_dataset"])
    return trainer.train(stepwise=cfg["stepwise"])


def main():
    param_grid = get_param_grid()
    for i, params in enumerate(param_grid):
        print("Config", str(i + 1), "/", str(len(param_grid)))
        cfg = get_cfg(get_args(), params)
        metrics = run(cfg)
        print("Best metrics:", metrics)


if __name__ == "__main__":
    main()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchtrain-0.4.9.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

torchtrain-0.4.9-py3-none-any.whl (9.2 kB view details)

Uploaded Python 3

File details

Details for the file torchtrain-0.4.9.tar.gz.

File metadata

  • Download URL: torchtrain-0.4.9.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.5

File hashes

Hashes for torchtrain-0.4.9.tar.gz
Algorithm Hash digest
SHA256 9a78b81f83245377ee7a4ff09120bb71ffc78481adece844ca23318a1d7fbb45
MD5 80db95479d6ba75572e9787f5e814069
BLAKE2b-256 aaf44425c0166930b21b1489b9b5c85e210334e94deb0222c0deb45ed66d1a99

See more details on using hashes here.

Provenance

File details

Details for the file torchtrain-0.4.9-py3-none-any.whl.

File metadata

  • Download URL: torchtrain-0.4.9-py3-none-any.whl
  • Upload date:
  • Size: 9.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.5

File hashes

Hashes for torchtrain-0.4.9-py3-none-any.whl
Algorithm Hash digest
SHA256 9114371e74bf3f409c261bdcbb2507d367d0ab1c4d47c264929f800d106af9a0
MD5 8d79582f05bbbf90fb86b8a704e0ab55
BLAKE2b-256 261104df7e1eb872e247be9cbc096e988c90fd1b3365f7c4f31e6469b276782b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page