Skip to main content

Phylogenetic inference with pytorch

Project description

torchtree

Python package

Installation

Use an Anaconda environment (Optional)

conda env create -f environment.yml
conda activate torchtree

The easy way

To install the latest stable version, run

pip install torchtree

Using the source code

git clone https://github.com/4ment/torchtree
cd torchtree
pip install .

Check install

torchtree --help

Quick start

torchtree will approximate the posterior distribution of an unrooted tree with a JC69 substitution model using variational inference

torchtree examples/advi/fluA.json

The JSON file can be generated using the torchtree CLI

torchtree-cli advi -i data/fluA.fa -t data/fluA.tree > fluA.json

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchtree-1.0.0.post3.tar.gz (118.8 kB view details)

Uploaded Source

Built Distribution

torchtree-1.0.0.post3-py3-none-any.whl (137.3 kB view details)

Uploaded Python 3

File details

Details for the file torchtree-1.0.0.post3.tar.gz.

File metadata

  • Download URL: torchtree-1.0.0.post3.tar.gz
  • Upload date:
  • Size: 118.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.2.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for torchtree-1.0.0.post3.tar.gz
Algorithm Hash digest
SHA256 00e3d66a3faf548de1b9cfd08242f2323624a7089b395b05106aedf18a938626
MD5 db0d84b76413f45b13fc4ee13bd8c65d
BLAKE2b-256 33e785b9fe46e6941234544be8d0f01e6d5e8c030e73829dbcda64256d568784

See more details on using hashes here.

File details

Details for the file torchtree-1.0.0.post3-py3-none-any.whl.

File metadata

  • Download URL: torchtree-1.0.0.post3-py3-none-any.whl
  • Upload date:
  • Size: 137.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.2.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for torchtree-1.0.0.post3-py3-none-any.whl
Algorithm Hash digest
SHA256 ba7682b3d97bbbc6f22718bf91f586c84f3c45fe0cdd4566737ec45e4e8c5211
MD5 cfdf385b13772bdeffd8de953cee1b96
BLAKE2b-256 34ee08ae3034f766be0933d13365585bfa424a7ec6f1ef93d94e3cdf70cf177c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page