Skip to main content

Training neural networks in PyTorch

Project description

torchtuples

Python package PyPI PyPI - Python Version License

torchtuples is a small python package for training PyTorch models. It works equally well for numpy arrays and torch tensors. One of the main benefits of torchtuples is that it handles data in the form of nested tuples (see example below).

Installation

torchtuples depends on PyTorch which should be installed from HERE.

Next, torchtuples can be installed with pip:

pip install torchtuples

For the bleeding edge version, install directly from github (consider adding --force-reinstall):

pip install git+git://github.com/havakv/torchtuples.git

or by cloning the repo:

git clone https://github.com/havakv/torchtuples.git
cd torchtuples
python setup.py install

Example

import torch
from torch import nn
from torchtuples import Model, optim

Make a data set with three sets of covariates x0, x1 and x2, and a target y. The covariates are structured in a nested tuple x.

n = 500
x0, x1, x2 = [torch.randn(n, 3) for _ in range(3)]
y = torch.randn(n, 1)
x = (x0, (x0, x1, x2))

Create a simple ReLU net that takes as input the tensor x_tensor and the tuple x_tuple. Note that x_tuple can be of arbitrary length. The tensors in x_tuple are passed through a layer lin_tuple, averaged, and concatenated with x_tensor. We then pass our new tensor through the layer lin_cat.

class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.lin_tuple = nn.Linear(3, 2)
        self.lin_cat = nn.Linear(5, 1)
        self.relu = nn.ReLU()

    def forward(self, x_tensor, x_tuple):
        x = [self.relu(self.lin_tuple(xi)) for xi in x_tuple]
        x = torch.stack(x).mean(0)
        x = torch.cat([x, x_tensor], dim=1)
        return self.lin_cat(x)

    def predict(self, x_tensor, x_tuple):
        x = self.forward(x_tensor, x_tuple)
        return torch.sigmoid(x)

We can now fit the model with

model = Model(Net(), nn.MSELoss(), optim.SGD(0.01))
log = model.fit(x, y, batch_size=64, epochs=5)

and make predictions with either the Net.predict method

preds = model.predict(x)

or with the Net.forward method

preds = model.predict_net(x)

For more examples, see the examples folder.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchtuples-0.2.0.tar.gz (38.0 kB view details)

Uploaded Source

Built Distribution

torchtuples-0.2.0-py3-none-any.whl (41.7 kB view details)

Uploaded Python 3

File details

Details for the file torchtuples-0.2.0.tar.gz.

File metadata

  • Download URL: torchtuples-0.2.0.tar.gz
  • Upload date:
  • Size: 38.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.5

File hashes

Hashes for torchtuples-0.2.0.tar.gz
Algorithm Hash digest
SHA256 e4ee59891e3689faaa46b68d77753243ad2d71a52751b375478367cbfdd650db
MD5 a6c76cafa8957f00826f7a34059b501a
BLAKE2b-256 3a36df87d5b0a07990944b6e158508e55d8d6c3030178a70cb0474932074c29e

See more details on using hashes here.

File details

Details for the file torchtuples-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: torchtuples-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 41.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.5

File hashes

Hashes for torchtuples-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8ec9425663a184efead5af77bb17217bdcfcfc5926bcb089e41fd751e45ea16c
MD5 beeafd7e19342c9a812a52a4a1ce5caa
BLAKE2b-256 957093eb42c0a46ef94b3885b8e5611a8019d00522a9ab7343d4ca25033afd44

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page