Skip to main content

Enhance torchvision for multi-channel images, 16-bit image, segmentation...

Project description

# torchvision-enhance

torchvision-enhance is used to enhance the offical PyTorch vision library torchvision. Here is the enhanced parts:
- support multi-channel(> 4 channels, e.g. 8 channels) images
- support 16-bit TIF file
- more easier to semantic segmentation transform



## Support transforms
- RandomFlip
- RandomVFlip
- RandomHFlip
- RandomRotate
- RandomShift
- RandomCrop
- CenterCrop
- Resize
- Pad
- GaussianBlur
- PieceTransform
- Lambda
- ToTensor
- Normalize

## Install
```
pip install torchvision-enhance
```

or install from the source

```
git clone
pip install -r requirements.txt
python setup.py install
```
## Dependencies
- numpy
- scipy
- Pillow
- PyTorch
- opencv
- scikit-image

## Usage
For more useage, check out the [example-classification.py](./test/example-classification.py) and [example-segmentation.py](./test/example-segmentation.py)

``` python
from torchvision_x.datasets import image_loader
from torchvision_x.transforms import transforms_seg,functional

transform = transforms_seg.SegCompose([
# transforms_seg.SegFlip(),
transforms_seg.SegVFlip(),
# transforms_seg.SegHFlip(),
# transforms_seg.SegRandomFlip(),
# transforms_seg.SegRandomRotate(90),
# transforms_seg.SegRandomShift(40),
# transforms_seg.SegRandomCrop((256,256)),
# transforms_seg.SegCenterCrop(224),
# transforms_seg.SegResize(224),
# transforms_seg.SegPad(20),
# transforms_seg.SegNoise(dtype='uint16', var=0.001), #TODO
# transforms_seg.SegGaussianBlur(sigma=2, dtype='uint8', multichannel=False),
# transforms_seg.SegPieceTransform(),
# transforms_seg.SegLambda(lambda x: functional.to_tensor(x))
transforms_seg.SegToTensor(),
transforms_seg.SegNormalize((0.5,0.5,0.5),(0.5,0.5,0.5)),
])

trainset = image_loader.SemanticSegmentationLoader(
rootdir='sample-data/', lstpath='sample-data/segmentation_jpg.lst',
filetype='jpg', transform=transform,
)
trainloader = DataLoader(dataset=trainset,batch_size=batch_size,shuffle=False)

for step, (inputs, targets) in enumerate(trainloader):
print('batch: {} ........'.format(step))
print(type(inputs), inputs.shape)
print(type(targets), targets.shape)
```

## TODO
- Noise

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchvision-enhance-0.1.3.tar.gz (13.4 kB view details)

Uploaded Source

File details

Details for the file torchvision-enhance-0.1.3.tar.gz.

File metadata

File hashes

Hashes for torchvision-enhance-0.1.3.tar.gz
Algorithm Hash digest
SHA256 3f03d638216b33d299d4238fb8f9a5c9968373c33c651e9f8620fd1bf0980eee
MD5 a0e6ad8f987525d69a027e9e6529d50e
BLAKE2b-256 a4ae7e1ac9784927b4ae5174c6f6533acacfa964982c30f77cd379ebfbaa7fd6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page