Skip to main content

Enhance torchvision for multi-channel images, 16-bit image, segmentation...

Project description

# torchvision-enhance

torchvision-enhance is used to enhance the offical PyTorch vision library torchvision. Here is the enhanced parts:
- support multi-channel(> 4 channels, e.g. 8 channels) images
- support 16-bit TIF file
- more easier to semantic segmentation transform

## Support transforms
- RandomFlip
- RandomVFlip
- RandomHFlip
- RandomRotate
- RandomShift
- RandomCrop
- CenterCrop
- Resize
- Pad
- GaussianBlur
- PieceTransform
- Lambda
- ToTensor
- Normalize

## Install
pip install torchvision-enhance

or install from the source

git clone
pip install -r requirements.txt
python install
## Dependencies
- numpy
- scipy
- Pillow
- PyTorch
- opencv
- scikit-image

## Usage
For more useage, check out the [](./test/ and [](./test/

``` python
from torchvision_x.datasets import image_loader
from torchvision_x.transforms import transforms_seg,functional

transform = transforms_seg.SegCompose([
# transforms_seg.SegFlip(),
# transforms_seg.SegHFlip(),
# transforms_seg.SegRandomFlip(),
# transforms_seg.SegRandomRotate(90),
# transforms_seg.SegRandomShift(40),
# transforms_seg.SegRandomCrop((256,256)),
# transforms_seg.SegCenterCrop(224),
# transforms_seg.SegResize(224),
# transforms_seg.SegPad(20),
# transforms_seg.SegNoise(dtype='uint16', var=0.001), #TODO
# transforms_seg.SegGaussianBlur(sigma=2, dtype='uint8', multichannel=False),
# transforms_seg.SegPieceTransform(),
# transforms_seg.SegLambda(lambda x: functional.to_tensor(x))

trainset = image_loader.SemanticSegmentationLoader(
rootdir='sample-data/', lstpath='sample-data/segmentation_jpg.lst',
filetype='jpg', transform=transform,
trainloader = DataLoader(dataset=trainset,batch_size=batch_size,shuffle=False)

for step, (inputs, targets) in enumerate(trainloader):
print('batch: {} ........'.format(step))
print(type(inputs), inputs.shape)
print(type(targets), targets.shape)

- Noise

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for torchvision-enhance, version 0.1.3
Filename, size File type Python version Upload date Hashes
Filename, size torchvision-enhance-0.1.3.tar.gz (13.4 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page