Skip to main content

image and video datasets and models for torch deep learning

Project description

torchvision

https://pepy.tech/badge/torchvision https://img.shields.io/badge/dynamic/json.svg?label=docs&url=https%3A%2F%2Fpypi.org%2Fpypi%2Ftorchvision%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v

The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

Installation

We recommend Anaconda as Python package management system. Please refer to pytorch.org for the detail of PyTorch (torch) installation. The following is the corresponding torchvision versions and supported Python versions.

torch

torchvision

python

master / nightly

master / nightly

>=3.6

1.8.0

0.9.0

>=3.6

1.7.1

0.8.2

>=3.6

1.7.0

0.8.1

>=3.6

1.7.0

0.8.0

>=3.6

1.6.0

0.7.0

>=3.6

1.5.1

0.6.1

>=3.5

1.5.0

0.6.0

>=3.5

1.4.0

0.5.0

==2.7, >=3.5, <=3.8

1.3.1

0.4.2

==2.7, >=3.5, <=3.7

1.3.0

0.4.1

==2.7, >=3.5, <=3.7

1.2.0

0.4.0

==2.7, >=3.5, <=3.7

1.1.0

0.3.0

==2.7, >=3.5, <=3.7

<=1.0.1

0.2.2

==2.7, >=3.5, <=3.7

Anaconda:

conda install torchvision -c pytorch

pip:

pip install torchvision

From source:

python setup.py install
# or, for OSX
# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install

In case building TorchVision from source fails, install the nightly version of PyTorch following the linked guide on the contributing page and retry the install.

By default, GPU support is built if CUDA is found and torch.cuda.is_available() is true. It’s possible to force building GPU support by setting FORCE_CUDA=1 environment variable, which is useful when building a docker image.

Image Backend

Torchvision currently supports the following image backends:

  • Pillow (default)

  • Pillow-SIMD - a much faster drop-in replacement for Pillow with SIMD. If installed will be used as the default.

  • accimage - if installed can be activated by calling torchvision.set_image_backend('accimage')

  • libpng - can be installed via conda conda install libpng or any of the package managers for debian-based and RHEL-based Linux distributions.

  • libjpeg - can be installed via conda conda install jpeg or any of the package managers for debian-based and RHEL-based Linux distributions. libjpeg-turbo can be used as well.

Notes: libpng and libjpeg must be available at compilation time in order to be available. Make sure that it is available on the standard library locations, otherwise, add the include and library paths in the environment variables TORCHVISION_INCLUDE and TORCHVISION_LIBRARY, respectively.

C++ API

TorchVision also offers a C++ API that contains C++ equivalent of python models.

Installation From source:

mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install

Once installed, the library can be accessed in cmake (after properly configuring CMAKE_PREFIX_PATH) via the TorchVision::TorchVision target:

find_package(TorchVision REQUIRED)
target_link_libraries(my-target PUBLIC TorchVision::TorchVision)

The TorchVision package will also automatically look for the Torch package and add it as a dependency to my-target, so make sure that it is also available to cmake via the CMAKE_PREFIX_PATH.

For an example setup, take a look at examples/cpp/hello_world.

TorchVision Operators

In order to get the torchvision operators registered with torch (eg. for the JIT), all you need to do is to ensure that you #include <torchvision/vision.h> in your project.

Documentation

You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html

Contributing

See the CONTRIBUTING file for how to help out.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset’s license.

If you’re a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchvision-0.10.0-cp39-cp39-win_amd64.whl (920.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

torchvision-0.10.0-cp39-cp39-manylinux2014_aarch64.whl (561.4 kB view details)

Uploaded CPython 3.9

torchvision-0.10.0-cp39-cp39-manylinux1_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.9

torchvision-0.10.0-cp39-cp39-macosx_11_0_arm64.whl (499.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchvision-0.10.0-cp39-cp39-macosx_10_9_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

torchvision-0.10.0-cp38-cp38-win_amd64.whl (920.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

torchvision-0.10.0-cp38-cp38-manylinux1_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.8

torchvision-0.10.0-cp38-cp38-macosx_11_0_arm64.whl (813.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

torchvision-0.10.0-cp38-cp38-macosx_10_9_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

torchvision-0.10.0-cp37-cp37m-win_amd64.whl (920.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

torchvision-0.10.0-cp37-cp37m-manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.7m

torchvision-0.10.0-cp37-cp37m-manylinux1_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.7m

torchvision-0.10.0-cp37-cp37m-macosx_10_9_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

torchvision-0.10.0-cp36-cp36m-win_amd64.whl (920.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

torchvision-0.10.0-cp36-cp36m-manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.6m

torchvision-0.10.0-cp36-cp36m-manylinux1_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.6m

torchvision-0.10.0-cp36-cp36m-macosx_10_9_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file torchvision-0.10.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 920.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 da65af25b51caf43327ecb3ccf550eedfd62d1f73511db44370b4b9522569b8d
MD5 ee9520ddec54428937169b10ae1a5841
BLAKE2b-256 76357fa3abe6a58a9c1270533c7b56ba2b6d8f25216e54299f2be6cd65443ec8

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 561.4 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a30466893a5b97073c992859f3645e3e1f41daf2c1b4db6cb2ac8ec7d0e1f6bc
MD5 112b805c44f942364a9a7cc5c1cb15e0
BLAKE2b-256 8892c00de7e23b1b2878cd175abb63ec8c2189761a076be0d9c15e6be98cd451

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 22.1 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 20a57ce42fa20c26d800c65d5b88dbaaa115a01f4f5623d41abfb182b854f199
MD5 606eefe2badbb2b505a869596383462d
BLAKE2b-256 000388edb6f9f7f17ce264a01209ac550878713a66a99d9d8e25747b15d6aadb

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 499.5 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae9606cc248de9b3a077710529b11c57315d2914c8ee3099fbd93a62f56a1661
MD5 5bd5c060eb761db46ad05095dd1d41d9
BLAKE2b-256 7c7946d770d340a5e57b711745e3cf4f11e9478c411ea33bf8bccf3d6b3fde9b

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f68291559a4cf1245c95efc5e47ebe158819aceec4e1f585d2fe133cd2c9d8e8
MD5 d4e9df81ff463d981f8537951d9369cb
BLAKE2b-256 76e67be72bbc5fa95a3c5f9690576bed1de45570f5f550a869bb19772f82d4c5

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 920.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 487bbfd89575a52cd18bca8a33e24c373570e060f801265051c3a0aafc769720
MD5 6b9f7e6bd7a6bcbd28e0adc88524f52a
BLAKE2b-256 a94316687a60d97b654d74e3410f68ec3f9aeb8bdad95c68ffc58b5a7fb02854

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 14.2 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4796e1fb2995c6e495c5ea4e2b0fe0e4be44bd9416ef4a1349c1a406675cbdee
MD5 65d3652578d4745bfa747cb206f53fad
BLAKE2b-256 354d1c069e8b325904c106e16c74705eb972bf0b68a70509d517ed81f43aeee8

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 22.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aa709fa63896f93e03a03976230a51050fcd5f1b45cf663f62d91b7eaaf8ac09
MD5 2d6a822bde72405678f34e20c65a5da6
BLAKE2b-256 3a8ea6e1b4781c4ed2fa3a541e5fb4be1abacb9aa694b508fc8b1c027ee420e7

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 813.8 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bb04708354fb6d639f6e47d8066b0d546fbe0a3a68685cf8d413a6370c8f63ad
MD5 e08a4b936f854f6705e8db9580b858fe
BLAKE2b-256 7309eb3546fb8b76f7b12861bad9de430766d4995347b22cdad547fb5e9fdb04

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 13.9 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad24107b2ed0ccc372af92822f1f8f5530907b6fb7520a08195cf0bb07446923
MD5 783bf50ff47a9a0e817c063318ad3ad8
BLAKE2b-256 a6e197492d5dba950d6a84d7c5d6ab2fe1cfe5b091ed02bd8e39b8931ffbac95

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 920.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 576d7b070f25cbfc78a710960fd8fa6d3961d640db05f7ace69d9a3e5bbf754a
MD5 43e02799d1a32c761e0c9fa7b6e480e8
BLAKE2b-256 3efe46f74fccb733b72414c501f0fff8c849ac3c499630afa43335acf31fc9a0

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 14.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ce2aae5567522f2a877c6334796721af07c164e94ff75876821fadb3310cfe7e
MD5 fafd18f54b6c849fd22b651435fec8c0
BLAKE2b-256 776a759f1447343bb2a9ac5cf1b24853812bc0aad4d815ce8414ddd1aaa2a781

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 22.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9597da592f76d22d9e80a4a072294e093f8c3a06c404f3ff237f359b9225e097
MD5 66cb101631241d6024fb94aa80d4d8db
BLAKE2b-256 712531f5d3c62b80aff0d95b9306e09487a29531a2a3d05cf767376bdc087c3a

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 13.9 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a405d968e7e94c0744870eef31c977635e2123b0b46becc1461a28b7c27d3c0c
MD5 14efc90644a3970c0a1c3d06e82a541a
BLAKE2b-256 cdba00f5e77bc094be01f69b1906b208b58018dcbd5d3f5c4524f0e584dcb323

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 920.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6b917d4762deaaa4c0cdd106403ea8384a1fdf93de424097bd71f3ebfdc76b41
MD5 95ce06c1d1c9f09ad16e5cd35c720359
BLAKE2b-256 6a067f9f96565230801235442acb47d7b7a42841f790349d1a4875ba10d12960

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 14.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d69bf15a6e885e3b8c674a524bc6b53016879cb8b0fd8537327edd2d243cab1
MD5 ecb5aa038c42448f35acf38fbb3db545
BLAKE2b-256 fab6a89d1156a1199b94f5dc5432936ab5da76d9cc0ca00d5f37224602c98b09

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 22.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d5c80cf058c0ecb010a97dc71225f5274e45c596bfad7505e0d000abcccb7063
MD5 1bb27f60f473387070bbf6e1b985e255
BLAKE2b-256 6a3c7f0eeee3c2ac87bc3e11366c6e7a63848abede7f99cf5ada32d64db6d9bf

See more details on using hashes here.

File details

Details for the file torchvision-0.10.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.10.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 13.9 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for torchvision-0.10.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f26c5ba220445ee8e892033234485c9276304874e87ec9d5146779167be3148d
MD5 a3f007d63fdfd57f5dfe6281b5d08e3e
BLAKE2b-256 44a91b216d7747fffb75e82155e7a361dd39cd90bee023f2cc0099b286c09e2e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page