Skip to main content

image and video datasets and models for torch deep learning

Project description

torchvision

https://pepy.tech/badge/torchvision https://img.shields.io/badge/dynamic/json.svg?label=docs&url=https%3A%2F%2Fpypi.org%2Fpypi%2Ftorchvision%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v

The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

Installation

We recommend Anaconda as Python package management system. Please refer to pytorch.org for the detail of PyTorch (torch) installation. The following is the corresponding torchvision versions and supported Python versions.

torch

torchvision

python

main / nightly

main / nightly

>=3.7, <=3.9

1.10.2

0.11.3

>=3.6, <=3.9

1.10.1

0.11.2

>=3.6, <=3.9

1.10.0

0.11.1

>=3.6, <=3.9

1.9.1

0.10.1

>=3.6, <=3.9

1.9.0

0.10.0

>=3.6, <=3.9

1.8.2

0.9.2

>=3.6, <=3.9

1.8.1

0.9.1

>=3.6, <=3.9

1.8.0

0.9.0

>=3.6, <=3.9

1.7.1

0.8.2

>=3.6, <=3.9

1.7.0

0.8.1

>=3.6, <=3.8

1.7.0

0.8.0

>=3.6, <=3.8

1.6.0

0.7.0

>=3.6, <=3.8

1.5.1

0.6.1

>=3.5, <=3.8

1.5.0

0.6.0

>=3.5, <=3.8

1.4.0

0.5.0

==2.7, >=3.5, <=3.8

1.3.1

0.4.2

==2.7, >=3.5, <=3.7

1.3.0

0.4.1

==2.7, >=3.5, <=3.7

1.2.0

0.4.0

==2.7, >=3.5, <=3.7

1.1.0

0.3.0

==2.7, >=3.5, <=3.7

<=1.0.1

0.2.2

==2.7, >=3.5, <=3.7

Anaconda:

conda install torchvision -c pytorch

pip:

pip install torchvision

From source:

python setup.py install
# or, for OSX
# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install

In case building TorchVision from source fails, install the nightly version of PyTorch following the linked guide on the contributing page and retry the install.

By default, GPU support is built if CUDA is found and torch.cuda.is_available() is true. It’s possible to force building GPU support by setting FORCE_CUDA=1 environment variable, which is useful when building a docker image.

Image Backend

Torchvision currently supports the following image backends:

  • Pillow (default)

  • Pillow-SIMD - a much faster drop-in replacement for Pillow with SIMD. If installed will be used as the default.

  • accimage - if installed can be activated by calling torchvision.set_image_backend('accimage')

  • libpng - can be installed via conda conda install libpng or any of the package managers for debian-based and RHEL-based Linux distributions.

  • libjpeg - can be installed via conda conda install jpeg or any of the package managers for debian-based and RHEL-based Linux distributions. libjpeg-turbo can be used as well.

Notes: libpng and libjpeg must be available at compilation time in order to be available. Make sure that it is available on the standard library locations, otherwise, add the include and library paths in the environment variables TORCHVISION_INCLUDE and TORCHVISION_LIBRARY, respectively.

Video Backend

Torchvision currently supports the following video backends:

  • pyav (default) - Pythonic binding for ffmpeg libraries.

  • video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn’t be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.

conda install -c conda-forge ffmpeg
python setup.py install

Using the models on C++

TorchVision provides an example project for how to use the models on C++ using JIT Script.

Installation From source:

mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install

Once installed, the library can be accessed in cmake (after properly configuring CMAKE_PREFIX_PATH) via the TorchVision::TorchVision target:

find_package(TorchVision REQUIRED)
target_link_libraries(my-target PUBLIC TorchVision::TorchVision)

The TorchVision package will also automatically look for the Torch package and add it as a dependency to my-target, so make sure that it is also available to cmake via the CMAKE_PREFIX_PATH.

For an example setup, take a look at examples/cpp/hello_world.

Python linking is disabled by default when compiling TorchVision with CMake, this allows you to run models without any Python dependency. In some special cases where TorchVision’s operators are used from Python code, you may need to link to Python. This can be done by passing -DUSE_PYTHON=on to CMake.

TorchVision Operators

In order to get the torchvision operators registered with torch (eg. for the JIT), all you need to do is to ensure that you #include <torchvision/vision.h> in your project.

Documentation

You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html

Contributing

See the CONTRIBUTING file for how to help out.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset’s license.

If you’re a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchvision-0.12.0-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchvision-0.12.0-cp310-cp310-manylinux1_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.10

torchvision-0.12.0-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchvision-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

torchvision-0.12.0-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchvision-0.12.0-cp39-cp39-manylinux1_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.9

torchvision-0.12.0-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchvision-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

torchvision-0.12.0-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchvision-0.12.0-cp38-cp38-manylinux1_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.8

torchvision-0.12.0-cp38-cp38-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

torchvision-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

torchvision-0.12.0-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

torchvision-0.12.0-cp37-cp37m-manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.7m

torchvision-0.12.0-cp37-cp37m-manylinux1_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.7m

torchvision-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file torchvision-0.12.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 894dacdc64b6e35e3f330722db51c76f4de016c7bf7bd79cf02ed2f4c106e625
MD5 87617f1fb9780f7cf42b609085e96753
BLAKE2b-256 35feaadb15075d9e613063b336c03a5168ccd2ecf023a958fe7b67bad634e552

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp310-cp310-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9771231639afb5973cdaea1d449b451e2982e1ef5410ca67bbdc2b465565573a
MD5 9dd747bf5acdcb0c48b7b72d8dc3c4a7
BLAKE2b-256 b80ae69432cb45acb2dcc4d45de89c89db63348377f0470aac1eccf69cea20be

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp310-cp310-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp310-cp310-manylinux1_x86_64.whl
  • Upload date:
  • Size: 21.0 MB
  • Tags: CPython 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ebfb47adf65bf3926b990b2c4767e291f135e259e03232e0e1a30ecdb05eb087
MD5 c1c662464f79d9a2279313be23b396a5
BLAKE2b-256 3116f41a1eef1dca9f7b5388f742e443e03ee2d3c31ef2427201a10edb864ee1

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a0be4501ca0ba1b195644c9243f49a1c49a26e52a7f37924c4239d0bf5ecbd8d
MD5 40386854575e22c38d969ffa8b91a025
BLAKE2b-256 a7d7faea1cbde879685013e42617a6bf904a1f5a113d318da90a4650d3c184d3

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 693656e6790b6ab21e4a6e87e81c2982bad9e455b5eb24e14bb672382ec6130f
MD5 56d8a10fb0a0c5189bb091c66b162667
BLAKE2b-256 7cf1921a657c93a40b026fb77057c514164fc1139b8be53558b966cc0c44a0a7

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 edab05f7ba9f648c00435b384ffdbd7bde79a3b8ea893813fb50f6ccf28b1e76
MD5 e4458886f57f6221343c4bc4121d4526
BLAKE2b-256 84e07a896f62ffe87d6863961a7d202c461c961c5cab1b78b73fa643994bae57

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b93a767f44e3933cb3b01a6fe9727db54590f57b7dac09d5aaf15966c6c151dd
MD5 66bd9de8e5e1d988bae3f795dba5161c
BLAKE2b-256 665bbb0e21352e64ee2ed727da00bc44f566caed2afffe4950b86c06b6f9af7f

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 21.0 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 49ed7886b93b80c9733462edd06a07f8d4c6ea4d5bd2894e7268f7a3774f4f7d
MD5 60eaa67c83ac17bfeb2ac7d420af29f7
BLAKE2b-256 fc68398ce995940b5534fc28ef1c9612005fcf58785c31b03eb26ca183f9fc19

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69d82f47b67bad6ddcbb87833ba5950a6c271ba97baae4c0955610071bf034f5
MD5 69b422ee67b25c53230b74f6b04f924b
BLAKE2b-256 43275aefe33caf57d194d6b6009c50772f6bc8a8392a5a8ebb9e502a9d1973ec

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 24d03fcaa28004c64a24124ac4a894c50f5948c8eb290e398d6c76fff2bc678f
MD5 f87d3a877cafcb90adda377333e32a76
BLAKE2b-256 11fcad24e5cee710cacc9bd8dbbbc364e6fd63b264319184365be2353ab4823d

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a91db01496932350bf9c0ee8607ac8ef31c3ebfdaedefe5c5cda0515317f8b8e
MD5 eca920bbd6075be19dd48fff56e9010d
BLAKE2b-256 0c861ca6e41d820dff2c2380857338d97edafdf293279b99329e31908d9f96cd

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0744902f2265d4c3e83c44a06b567df312e4a9faf8c92620016c7bed7056b5a7
MD5 2411b30ccb7612cee93fe95109d08876
BLAKE2b-256 8acb6070ba8f6105d2e9498800f03363762b769600477e9fece987b475db987e

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 21.0 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9017248c7e526c8cdcaaab8cf41d904a520a409d707398189a06d0757901d235
MD5 28506cd48314621ceda3480c03e985f0
BLAKE2b-256 188b309116c0bdc90ac7036ca331bfec8dd3e6f7f6d00f869fe6552da096e94a

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f42420f7f0b29cd3d61776df3157827257a0cf16b2c02776dc16c96abb1256d
MD5 3fbb6a95b56cdb8230e95c9ced5c964a
BLAKE2b-256 7466bde17bc5cb9c0e7c261a42a3d97a23b5b2a74e3a04e28a9b8c5512b3fe72

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1ccb53836ba886320dcda12d00ee8b5f8f38b6c36d7906f141d25778cf74104
MD5 d3b582ff813392da5bee3a119d09f212
BLAKE2b-256 302e7bef6bb1f62d3cfd98620537858284b5be294ad6c2f917ef86080e2a4a02

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c225f55c1bfce027a03f4ca46ddb9559c83f8087c2880bed3261a76c49bb7996
MD5 ab3ff731edc09225c94dc04ba9b9b584
BLAKE2b-256 2e9979ff8e77a9df8ce787e599a95ec01c9710f297d35e0fe9ab4a83b96b6317

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 926666f0b893dce6619759c19b0dd3884af7a9d7022b10395653659d28e43c48
MD5 38840cb17ce6c503efd9a95374e09bd9
BLAKE2b-256 60ba20769447ad9aeb8a355f1324083fde87e86c2c59c3b2d4cf8851894e4b44

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 21.0 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aac76d52c5ce4229cb0eaebb762f3391fa736565eb35a4184fa0f7be30b705cd
MD5 add1e580cf4321d5df41d9ab93e802a2
BLAKE2b-256 115a6dc5d28e352187502f80b4015fb05ccdd401fa6125f51750a789f2536c18

See more details on using hashes here.

File details

Details for the file torchvision-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for torchvision-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 36dfdf6451fe3072ab15118982853b848896c0fd3b26cb8135e1e7981dbb0916
MD5 d9197e92a1e40ad89b17449df2b1d22f
BLAKE2b-256 070216044263fe6b291dfdc8bbc8103dbea8d132171bc1121f759e3d0f0e2ee0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page