torchvision for anomaly detection
Project description
torchvision for Anomaly Detection
You can use the MVTec Anomaly Detection Dataset.
Installation
pip:
$ pip install torchvision4ad
From source:
$ python setup.py install
Usage
You can use one of the MVTec AD Dataset names {'bottle', 'cable', 'capsule', 'carpet', 'grid', 'hazelnut', 'leather', 'metal_nut', 'pill', 'screw', 'tile', 'toothbrush', 'transistor', 'wood', 'zipper'}.
from torchvision4ad.datasets import MVTecAD
root = "mvtec_ad"
dataset_name = "bottle"
mvtec_ad = MVTecAD(root, dataset_name, train=True, download=True)
for (img, target) in mvtec_ad:
...
Of course, you can also give a function/transform takes in an PIL image and returns a transformed version.
import torchvision.transforms as transforms
from torchvision4ad.datasets import MVTecAD
transform = transforms.Compose([transforms.Resize([64, 64]),
transforms.ToTensor()])
mvtec_ad = MVTecAD("mvtec_ad", "bottle", train=True, transform=transform, download=True)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchvision4ad-0.1.0.tar.gz
(2.3 kB
view details)
Built Distributions
File details
Details for the file torchvision4ad-0.1.0.tar.gz
.
File metadata
- Download URL: torchvision4ad-0.1.0.tar.gz
- Upload date:
- Size: 2.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | acfb5875a4a95c46677693a8ec4b20b7229b9fc7841239d7147c398b80d143dd |
|
MD5 | df560ed3773b905f12ea51dc08582a28 |
|
BLAKE2b-256 | 5c6995ebe534442fa10e4c86703d189121c22344bce2823bf76aa1716a576b8d |
File details
Details for the file torchvision4ad-0.1.0-py3.7.egg
.
File metadata
- Download URL: torchvision4ad-0.1.0-py3.7.egg
- Upload date:
- Size: 1.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 425a67da100e8a602b716950e76d4fa0c55235a4067403371499caf463bdfe23 |
|
MD5 | 9f97830807842a461f9bc6866b45c3d2 |
|
BLAKE2b-256 | 07bdad107562ca706d215152bec9030ff06657e1bd5c1ce36e727acf716572f0 |
File details
Details for the file torchvision4ad-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: torchvision4ad-0.1.0-py3-none-any.whl
- Upload date:
- Size: 2.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 710455847c28c251593288b241333286012b1c5bba133ea109d2dfbaaff3bd5b |
|
MD5 | afdc0011df3282a1e73041499ec4fd72 |
|
BLAKE2b-256 | 99fad9630acb33bfd94e423f264d6da4e1b801053bc0e4c1ee244e99770535da |