Skip to main content

torchvision for anomaly detection

Project description

torchvision for Anomaly Detection

You can use the MVTec Anomaly Detection Dataset.

Installation

pip:

$ pip install torchvision4ad

From source:

$ python setup.py install

Usage

You can use one of the MVTec AD Dataset names {'bottle', 'cable', 'capsule', 'carpet', 'grid', 'hazelnut', 'leather', 'metal_nut', 'pill', 'screw', 'tile', 'toothbrush', 'transistor', 'wood', 'zipper'}.

from torchvision4ad.datasets import MVTecAD


root = 'mvtec_ad'
dataset_name = 'bottle'
mvtec_ad = MVTecAD(root, dataset_name, train=True, download=True)
for (img, target) in mvtec_ad:
    ...

Of course, you can also give a function/transform takes in an PIL image and returns a transformed version.

import torchvision.transforms as transforms

from torchvision4ad.datasets import MVTecAD


transform = transforms.Compose([transforms.Resize([64, 64]),
                                transforms.ToTensor()])
mvtec_ad = MVTecAD('mvtec_ad', 'bottle', train=True, transform=transform, download=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchvision4ad-0.1.1.tar.gz (3.7 kB view details)

Uploaded Source

Built Distribution

torchvision4ad-0.1.1-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file torchvision4ad-0.1.1.tar.gz.

File metadata

  • Download URL: torchvision4ad-0.1.1.tar.gz
  • Upload date:
  • Size: 3.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.4

File hashes

Hashes for torchvision4ad-0.1.1.tar.gz
Algorithm Hash digest
SHA256 3a61553b5fff6fcef1e0fd2d43228b30109e71ec2c26183dcd7b3b9d9fedf5e0
MD5 e76bc12ebfba6f7535a29225c2968a63
BLAKE2b-256 a91d3dcfc004708301dfbcec7afd3e8a4cb5f79857a96a1a783c534c6653c057

See more details on using hashes here.

File details

Details for the file torchvision4ad-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: torchvision4ad-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 4.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.4

File hashes

Hashes for torchvision4ad-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 bfce9cdb3e8c4f3c9e22ad5df9706c5b38604226d7271205f79e29538fb60e7f
MD5 2d61ead3a45938003772ea5335d89dcb
BLAKE2b-256 b62f7d6026a1b5f7003ed298355cfadccacdf4dba792a8b7de7f56b813258ff2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page