torchvision for anomaly detection
Project description
torchvision for Anomaly Detection
You can use the MVTec Anomaly Detection Dataset.
Installation
pip:
$ pip install torchvision4ad
From source:
$ python setup.py install
Usage
You can use one of the MVTec AD Dataset names {'bottle', 'cable', 'capsule', 'carpet', 'grid', 'hazelnut', 'leather', 'metal_nut', 'pill', 'screw', 'tile', 'toothbrush', 'transistor', 'wood', 'zipper'}.
from torchvision4ad.datasets import MVTecAD
root = 'mvtec_ad'
dataset_name = 'bottle'
mvtec_ad = MVTecAD(root, dataset_name, train=True, download=True)
for (img, target) in mvtec_ad:
...
Of course, you can also give a function/transform takes in an PIL image and returns a transformed version.
import torchvision.transforms as transforms
from torchvision4ad.datasets import MVTecAD
transform = transforms.Compose([transforms.Resize([64, 64]),
transforms.ToTensor()])
mvtec_ad = MVTecAD('mvtec_ad', 'bottle', train=True, transform=transform, download=True)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchvision4ad-0.1.2.tar.gz
(4.0 kB
view details)
Built Distribution
File details
Details for the file torchvision4ad-0.1.2.tar.gz
.
File metadata
- Download URL: torchvision4ad-0.1.2.tar.gz
- Upload date:
- Size: 4.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d92987264ff25a50a8a117963887369ad01e403304d9e13d8d5dadd4afef1c40 |
|
MD5 | 42efa38fb7c520db415b19390a26bc58 |
|
BLAKE2b-256 | 2a7699339185f0d23c92e5c85963c349c74fccef85cd582100589eecf09152cb |
File details
Details for the file torchvision4ad-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: torchvision4ad-0.1.2-py3-none-any.whl
- Upload date:
- Size: 4.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 43d6c683fcaabe83617ad7a80027f99421857a87058fb9ca5e49c6c769450e70 |
|
MD5 | 9f312e840f2abb2ad309801026a8f40c |
|
BLAKE2b-256 | 2489017c4e168eee6a6ad2dad64ded1209fb5eb9a06fa262851ca1cee7aabab0 |