A Wrapper for PyTorch Models
Project description
TorchWrapper
A wrapper class for a PyTorhc Model using fit and predict functions that are familiar to those who use Keras and Sklearn.
Reduces the need to write fit and evaluation functions for basic models.
Quick Start
# import the module
from torchwrapper import Wrapper
# create your module, optimizer, and criterion function
model = Model()
optimizer = torch.optim.Adam(model.parameters())
criterion = torch.nn.MSELos()
# wrap the model
model = Wrapper(model)
# train the network
model.fit(dataloader, optimizer, criterion, epochs=50)
With a trained model, you can predict using a PyTorch dataloader:
preds = model.predict(dataloader)
This will return a numpy array of the predictions.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchwrapper-0.1.4.tar.gz
(2.6 kB
view details)
File details
Details for the file torchwrapper-0.1.4.tar.gz
.
File metadata
- Download URL: torchwrapper-0.1.4.tar.gz
- Upload date:
- Size: 2.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5da3399eb7eac3c1873ed47d096e15ef89d732a16f4bbf43c1967e03e6318392 |
|
MD5 | 4b9bfc2a4f916c53be88f82c4654561d |
|
BLAKE2b-256 | ca1360635cd719ef59972b10657c642b99b8b01d94adb6106f94e9e0f282826f |