Skip to main content

TorchZQ: A simple PyTorch experiment runner.

Project description

TorchZQ: A simple PyTorch experiment runner.

Zouqi (『走起』 in Chinese) means "let's go". When you zouqi your experiment, the experiment will go with you.

Installation

pip install git+https://github.com/enhuiz/torchzq

or

$ git clone https://github.com/enhuiz/torchzq
$ cd torchzq
$ pip install .

Run an Example

Training

$ zouqi example/config/mnist.yml train

Testing

$ zouqi example/config/mnist.yml test

TensorBoard

$ zqboard --logdir .

Supported Features

  • Model checkpoints
  • Logging
  • Gradient accumulation
  • Configuration file
  • Configuration file inheritance
  • TensorBoard
  • (c)GAN training (WGAN-GP)
  • Automatic mixed precision

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchzq-1.0.1.tar.gz (10.1 kB view details)

Uploaded Source

File details

Details for the file torchzq-1.0.1.tar.gz.

File metadata

  • Download URL: torchzq-1.0.1.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.12

File hashes

Hashes for torchzq-1.0.1.tar.gz
Algorithm Hash digest
SHA256 75efbaa2c2b29392aa72cb058b794c120fc05fc11bcffe6fcae391735609afcb
MD5 fed861c273dedae5f0d114dfa1da622f
BLAKE2b-256 d0c5594628d1e2968a647b33c27b0d97bf6e01a31717107b73cc85c41e3e3be8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page