Skip to main content

TorchZQ: A PyTorch experiment runner.

Project description

TorchZQ: A PyTorch experiment runner built with zouqi

Installation

Install from PyPI:

pip install torchzq

Install the latest version:

pip install git+https://github.com/enhuiz/torchzq@main

An Example for MNIST Classification

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms

import torchzq

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout2d(0.25)
        self.dropout2 = nn.Dropout2d(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output


class Runner(torchzq.Runner):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def create_model(self):
        return Net()

    def create_dataset(self):
        return datasets.MNIST(
            "../data",
            train=self.training,
            download=True,
            transform=transforms.Compose(
                [
                    transforms.ToTensor(),
                    transforms.Normalize((0.1307,), (0.3081,)),
                ]
            ),
        )

    def prepare_batch(self, batch):
        x, y = batch
        x = x.to(self.args.device)
        y = y.to(self.args.device)
        return x, y

    def training_step(self, batch, optimizer_index):
        x, y = self.prepare_batch(batch)
        loss = F.nll_loss(self.model(x), y)
        return loss, {"nll_loss": loss.item()}

    @torch.no_grad()
    def testing_step(self, batch, batch_index):
        x, y = self.prepare_batch(batch)
        y_ = self.model(x).argmax(dim=-1)
        return {"accuracy": (y_ == y).float().mean().item()}


if __name__ == "__main__":
    torchzq.start(Runner)

Run an Example

Training

tzq example/config/mnist.yml train

Testing

tzq example/config/mnist.yml test

Weights & Biases

Before you run, login Weights & Biases first.

pip install wandb # install weight & bias client
wandb login       # login

Supported Features

  • Model checkpoints
  • Logging (Weights & Biases)
  • Gradient accumulation
  • Configuration file
  • FP16

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchzq-1.0.10.dev20210907003718.tar.gz (13.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file torchzq-1.0.10.dev20210907003718.tar.gz.

File metadata

  • Download URL: torchzq-1.0.10.dev20210907003718.tar.gz
  • Upload date:
  • Size: 13.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for torchzq-1.0.10.dev20210907003718.tar.gz
Algorithm Hash digest
SHA256 e94d85d5b26c6f717dda3130104ab382407c9bf0c739c2d37dd4d5c3c1ea124d
MD5 a989ccf7736f4cb8e02277a2651331f7
BLAKE2b-256 cc6a765593b7b3162b99e755a704f78743f772394ac3bed2a6961106afdb9232

See more details on using hashes here.

File details

Details for the file torchzq-1.0.10.dev20210907003718-py3-none-any.whl.

File metadata

  • Download URL: torchzq-1.0.10.dev20210907003718-py3-none-any.whl
  • Upload date:
  • Size: 14.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for torchzq-1.0.10.dev20210907003718-py3-none-any.whl
Algorithm Hash digest
SHA256 a7d020a676387f3269a10de6d003af480f99deaa16d7d712b01d2e681aec4493
MD5 304e9e87cc1118bea98b7f2046dcac92
BLAKE2b-256 29c9b7f83c0d94a82db991d4a24e2bcf0ed609110a8276836bbe978c4fda8da7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page