Skip to main content

TorchZQ: A PyTorch experiment runner.

Project description

TorchZQ: A PyTorch experiment runner built with zouqi

Installation

Install from PyPI:

pip install torchzq

Install the latest version:

pip install git+https://github.com/enhuiz/torchzq@main

An Example for MNIST Classification

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms

import torchzq

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout2d(0.25)
        self.dropout2 = nn.Dropout2d(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output


class Runner(torchzq.Runner):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def create_model(self):
        return Net()

    def create_dataset(self):
        return datasets.MNIST(
            "../data",
            train=self.training,
            download=True,
            transform=transforms.Compose(
                [
                    transforms.ToTensor(),
                    transforms.Normalize((0.1307,), (0.3081,)),
                ]
            ),
        )

    def prepare_batch(self, batch):
        x, y = batch
        x = x.to(self.args.device)
        y = y.to(self.args.device)
        return x, y

    def training_step(self, batch, optimizer_index):
        x, y = self.prepare_batch(batch)
        loss = F.nll_loss(self.model(x), y)
        return loss, {"nll_loss": loss.item()}

    @torch.no_grad()
    def testing_step(self, batch, batch_index):
        x, y = self.prepare_batch(batch)
        y_ = self.model(x).argmax(dim=-1)
        return {"accuracy": (y_ == y).float().mean().item()}


if __name__ == "__main__":
    torchzq.start(Runner)

Run an Example

Training

tzq example/config/mnist.yml train

Testing

tzq example/config/mnist.yml test

Weights & Biases

Before you run, login Weights & Biases first.

pip install wandb # install weight & bias client
wandb login       # login

Supported Features

  • Model checkpoints
  • Logging (Weights & Biases)
  • Gradient accumulation
  • Configuration file
  • FP16

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchzq-1.0.10.dev20210907004045.tar.gz (13.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file torchzq-1.0.10.dev20210907004045.tar.gz.

File metadata

  • Download URL: torchzq-1.0.10.dev20210907004045.tar.gz
  • Upload date:
  • Size: 13.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for torchzq-1.0.10.dev20210907004045.tar.gz
Algorithm Hash digest
SHA256 c77c03cd558b42716bbd82cb2e6b206c0bc5b5b96d8117f4b4cf3f2be18995a5
MD5 8c147fe7b3a03bb74954c82707fad8d9
BLAKE2b-256 01c46169a7480ffdcfa77e5d29b7d2aceadaf79f5b1ae657740169ea81309d70

See more details on using hashes here.

File details

Details for the file torchzq-1.0.10.dev20210907004045-py3-none-any.whl.

File metadata

  • Download URL: torchzq-1.0.10.dev20210907004045-py3-none-any.whl
  • Upload date:
  • Size: 14.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for torchzq-1.0.10.dev20210907004045-py3-none-any.whl
Algorithm Hash digest
SHA256 40bfde6cad368a9dba61cbb7d59b9cd2ca6a6f0234a530f417822341aaae1347
MD5 5f8755d636afb9348c0456e26e02263d
BLAKE2b-256 cbbbf8de98b0ad8a449b9157cb6122b40a9376f5c82aaa10e9b11e5ecfc7d5ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page