Skip to main content

TorchZQ: A simple PyTorch experiment runner.

Project description

TorchZQ: A simple PyTorch experiment runner.

Zouqi (『走起』 in Chinese) means "let's go". When you zouqi your experiment, the experiment will go with you.

Installation

pip install git+https://github.com/enhuiz/torchzq

or

$ git clone https://github.com/enhuiz/torchzq
$ cd torchzq
$ pip install .

Run an Example

Training

$ zouqi example/config/mnist.yml train

Testing

$ zouqi example/config/mnist.yml test

TensorBoard

$ zqboard --logdir .

Supported Features

  • Model checkpoints
  • Logging
  • Gradient accumulation
  • Configuration file
  • Configuration file inheritance
  • TensorBoard
  • (c)GAN training (WGAN-GP)
  • Automatic mixed precision

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchzq-1.0.2.tar.gz (9.8 kB view details)

Uploaded Source

Built Distribution

torchzq-1.0.2-py3-none-any.whl (13.9 kB view details)

Uploaded Python 3

File details

Details for the file torchzq-1.0.2.tar.gz.

File metadata

  • Download URL: torchzq-1.0.2.tar.gz
  • Upload date:
  • Size: 9.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.12

File hashes

Hashes for torchzq-1.0.2.tar.gz
Algorithm Hash digest
SHA256 cb9c7300699b18d665446579a0f057a220dfbd84ce0a1ca19e999fade66481a1
MD5 8b7daa2bf54a2527905512c8748499b8
BLAKE2b-256 6e30ffc0aed4aeb5666cf5a94e5bbff1d589e1ac45c02e6dfd09ff6cac1d12a8

See more details on using hashes here.

File details

Details for the file torchzq-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: torchzq-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 13.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.12

File hashes

Hashes for torchzq-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 e65d74232ce30ddd0d76c82e1cc98a946d2f02b0367c30c689c208c63bdfc72e
MD5 3945e108a6b8610a8e694b6959a159f5
BLAKE2b-256 db798cc7227a9e3e216c078b84eaa2423565864cfff0ea530246916243243084

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page