Skip to main content

TorchZQ: A simple PyTorch experiment runner.

Project description

TorchZQ: A simple PyTorch experiment runner.

Zouqi (『走起』 in Chinese) means "let's go". When you zouqi your experiment, the experiment will go with you.

Installation

Install from PyPI:

pip install torchzq

Install the latest version:

pip install git+https://github.com/enhuiz/torchzq@master

Run an Example

Training

$ zouqi example/config/mnist.yml train

Testing

$ zouqi example/config/mnist.yml test

TensorBoard

$ tensorboard --logdir logs

Supported Features

  • Model checkpoints
  • Logging
  • Gradient accumulation
  • Configuration file
  • Configuration file inheritance
  • TensorBoard
  • (c)GAN training (WGAN-GP)
  • FP16

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchzq-1.0.7.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

torchzq-1.0.7-py3-none-any.whl (14.7 kB view details)

Uploaded Python 3

File details

Details for the file torchzq-1.0.7.tar.gz.

File metadata

  • Download URL: torchzq-1.0.7.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for torchzq-1.0.7.tar.gz
Algorithm Hash digest
SHA256 574b0fa00ea2eb783578492ae2ab2515e461a879af5e82f888d0c708a6dfeaca
MD5 e372bd311cb843000d5d0da2a240a21f
BLAKE2b-256 928695e49e4ba9d88e82c58b0a2f39d8c09d839655771d4045b134b1ffe11fa8

See more details on using hashes here.

File details

Details for the file torchzq-1.0.7-py3-none-any.whl.

File metadata

  • Download URL: torchzq-1.0.7-py3-none-any.whl
  • Upload date:
  • Size: 14.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for torchzq-1.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 306c40259e437876cae15f63ad397eab4085a400aa2bf7381e93b03c65f33864
MD5 3e1ee22166b6c2fb81208d0232526ff1
BLAKE2b-256 79e047550deb2e2223daa75bb40d6c38fc32aea159ce798dd37e015a653b2703

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page