tps_threadpool_executor,it can run function specify times every second
Project description
1. pip install tps_threadpool_executor
这个线程池和一般线程池不同,是自动控频的,能够将任意耗时大小的函数控制成指定的运行频率。
此线程池入参不是设置并发大小(也可以设置并发大小),而是设置tps大小(为0则不控频)。
能够自动多进程 + 多线程消费。目前的所有三方包要么是进程池,要么是线程池,不够完美。这个是自动多进程+线程池。
2. 4种控频线程池
TpsThreadpoolExecutor 基于单进程的当前线程池控频。
DistributedTpsThreadpoolExecutor 基于多台机器的分布式控频,需要安装redis,统计出活跃线程池,从而平分任务。
TpsThreadpoolExecutorWithMultiProcess 基于单机 多进程 + 智能线程池 的控频率,自动开启多进程,适合单台电脑但cpu核心多。
DistributedTpsThreadpoolExecutorWithMultiProcess 基于多机的,每台机器自动开多进程 + 多线程 的控频率,适合多态电脑,但每台电脑的cpu核数不够强大。
实现代码
import json
import time
from queue import Queue
import threading
from threadpool_executor_shrink_able.sharp_threadpoolexecutor import ThreadPoolExecutorShrinkAble
import nb_log
import redis
import decorator_libs
import socket
import os
import multiprocessing
import atexit
# 4种控频
"""
TpsThreadpoolExecutor 基于单进程的当前线程池控频。
DistributedTpsThreadpoolExecutor 基于多台机器的分布式控频,需要安装redis,统计出活跃线程池,从而平分任务。
TpsThreadpoolExecutorWithMultiProcess 基于单机 多进程 + 智能线程池 的控频率,自动开启多进程。
DistributedTpsThreadpoolExecutorWithMultiProcess 基于多机的,每台机器自动开多进程的控频率。
例如你有1台 128核的电脑作为压测客户机, 需要对web服务产生每秒1万次请求,则选择 TpsThreadpoolExecutorWithMultiProcess 合适(不需要安装redis)。
例如你有6台 16核的电脑作为压测客户机, 需要对web服务产生每秒1万次请求,则选择 DistributedTpsThreadpoolExecutorWithMultiProcess 合适。
"""
class ThreadPoolExecutorShrinkAbleWithSpecifyQueue(ThreadPoolExecutorShrinkAble):
def __init__(self, *args, specify_work_queue=None, **kwargs):
super(ThreadPoolExecutorShrinkAbleWithSpecifyQueue, self).__init__(*args, **kwargs)
self.work_queue = specify_work_queue
class TpsThreadpoolExecutor(nb_log.LoggerMixin):
def __init__(self, tps=0, max_workers=500, specify_work_queue=None):
"""
:param tps: 指定线程池每秒运行多少次函数,为0这不限制运行次数
"""
self.tps = tps
self.time_interval = 1 / tps if tps != 0 else 0
self.pool = ThreadPoolExecutorShrinkAbleWithSpecifyQueue(max_workers=max_workers,
specify_work_queue=specify_work_queue or Queue(
max_workers)) # 这是使用的智能线程池,所以可以写很大的数字,具体见另一个包的解释。
self._last_submit_task_time = time.time()
self._lock_for_count__last_submit_task_time = threading.Lock()
def submit(self, func, *args, **kwargs):
with self._lock_for_count__last_submit_task_time:
if self.time_interval:
time.sleep(self.time_interval)
return self.pool.submit(func, *args, **kwargs)
def shutdown(self, wait=True):
self.pool.shutdown(wait=wait)
def get_host_ip():
ip = ''
host_name = ''
# noinspection PyBroadException
try:
sc = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sc.connect(('8.8.8.8', 80))
ip = sc.getsockname()[0]
host_name = socket.gethostname()
sc.close()
except Exception:
pass
return ip, host_name
class DistributedTpsThreadpoolExecutor(TpsThreadpoolExecutor, ):
"""
这个是redis分布式控频线程池,不是基于incr计数的,是基于统计活跃消费者,然后每个线程池平分频率的。
"""
def __init__(self, tps=0, max_workers=500, specify_work_queue=None, pool_identify: str = None,
redis_url: str = 'redis://:@127.0.0.1/0'):
"""
:param tps: 指定线程池每秒运行多少次函数,为0这不限制运行次数
:param pool_identify: 对相同标识的pool,进行分布式控频,例如多台机器都有标识为 123 的线程池,则所有机器加起来的运行次数控制成指定频率。
:param redis_url: 'redis://:secret@100.22.233.110/7'
"""
if pool_identify is None:
raise ValueError('设置的参数错误')
self._pool_identify = pool_identify
super(DistributedTpsThreadpoolExecutor, self).__init__(tps=tps, max_workers=max_workers, specify_work_queue=specify_work_queue)
# self.queue = multiprocessing.Queue(500)
self.redis_db = redis.from_url(redis_url)
self.redis_key_pool_identify = f'DistributedTpsThreadpoolExecutor:{pool_identify}'
ip, host_name = get_host_ip()
self.current_process_flag = f'{ip}-{host_name}-{os.getpid()}-{id(self)}'
self._heartbeat_interval = 10
decorator_libs.keep_circulating(self._heartbeat_interval, block=False, daemon=True)(
self._send_heartbeat_to_redis)
threading.Thread(target=self._run__send_heartbeat_to_redis_2_times).start()
self._last_show_pool_instance_num = time.time()
def _run__send_heartbeat_to_redis_2_times(self):
""" 使开始时候快速检测两次"""
self._send_heartbeat_to_redis()
time.sleep(2)
self._send_heartbeat_to_redis()
def _send_heartbeat_to_redis(self):
all_identify = self.redis_db.smembers(self.redis_key_pool_identify)
for identify in all_identify:
identify_dict = json.loads(identify)
if identify_dict['current_process_flag'] == self.current_process_flag:
self.redis_db.srem(self.redis_key_pool_identify, identify)
if time.time() - identify_dict['last_heartbeat_ts'] > self._heartbeat_interval + 1:
self.redis_db.srem(self.redis_key_pool_identify, identify)
self.redis_db.sadd(self.redis_key_pool_identify, json.dumps(
{'current_process_flag': self.current_process_flag, 'last_heartbeat_ts': time.time(),
'last_heartbeat_time_str': time.strftime('%Y-%m-%d %H:%M:%S')}))
pool_instance_num = self.redis_db.scard(self.redis_key_pool_identify)
if time.time() - self._last_show_pool_instance_num > 60:
self.logger.debug(f'分布式环境中一共有 {pool_instance_num} 个 {self._pool_identify} 标识的线程池')
self.time_interval = (1.0 / self.tps) * pool_instance_num if self.tps != 0 else 0
class TpsThreadpoolExecutorWithMultiProcess(nb_log.LoggerMixin):
""" 自动开多进程 + 线程池的方式。 例如你有一台128核的压测机器 对 web服务端进行压测,要求每秒压测1万 tps,单进程远远无法做到,可以方便设置 process_num 为 100"""
def _start_a_threadpool(self, ):
ttp = TpsThreadpoolExecutor(tps=self.tps / self.process_num, max_workers=self._max_works) # noqa
while True:
func, args, kwargs = self.queue.get() # 结束可以放None,然后这里判断,终止。或者joinable queue
future = ttp.submit(func, *args, **kwargs)
future.add_done_callback(self._queue_call_back)
# noinspection PyUnusedLocal
def _queue_call_back(self, result):
self.queue.task_done()
def __init__(self, tps=0, max_workers=500, process_num=1):
# if os.name == 'nt':
# raise EnvironmentError('不支持win')
# self.queue = multiprocessing.Queue(1)
self._max_works = max_workers
self.queue = multiprocessing.JoinableQueue(1) # mu
self.tps = tps
self.process_num = process_num
self.time_interval = 1 / tps if tps != 0 else 0
self._lock_for_submit = multiprocessing.Lock()
for _ in range(process_num):
multiprocessing.Process(target=self._start_a_threadpool, daemon=True).start()
atexit.register(self._at_exit)
def submit(self, func, *args, **kwargs):
self.queue.put((func, args, kwargs))
def shutdown(self, wait=True):
self.queue.join()
def _at_exit(self):
self.logger.warning('触发atexit')
self.queue.join()
# noinspection PyMethodOverriding
class DistributedTpsThreadpoolExecutorWithMultiProcess(TpsThreadpoolExecutorWithMultiProcess):
""" 自动开多进程 + 线程池的方式。 例如你有6台16核的压测机器 对 web服务端进行压测,要求每秒压测1万 tps,单进程远远无法做到,可以方便设置 process_num 为 100"""
def _start_a_threadpool(self):
ttp = DistributedTpsThreadpoolExecutor(tps=self.tps, max_workers=self._max_works, pool_identify=self.pool_identify, redis_url=self.redis_url) # noqa
while True:
func, args, kwargs = self.queue.get()
future = ttp.submit(func, *args, **kwargs)
future.add_done_callback(self._queue_call_back)
# noinspection PyMissingConstructor
def __init__(self, tps=0, max_workers=500, process_num=1, pool_identify: str = None, redis_url: str = 'redis://:@127.0.0.1/0'):
self.pool_identify = pool_identify
self.redis_url = redis_url
self.queue = multiprocessing.JoinableQueue(1)
self.tps = tps
self.process_num = process_num
self.time_interval = 1 / tps if tps != 0 else 0
self._max_workers = max_workers
# self.ttp = DistributedTpsThreadpoolExecutor(tps=self.tps, pool_identify=self.pool_identify, redis_url=self.redis_url)
for _ in range(process_num):
multiprocessing.Process(target=self._start_a_threadpool, daemon=True).start()
atexit.register(self._at_exit)
def f1(x):
time.sleep(0.5)
print(os.getpid(),threading.get_ident(), x)
def f2(x):
time.sleep(7)
print(os.getpid(), x)
def request_baidu():
import requests
resp = requests.get('http://www.baidu.com/content-search.xml')
print(os.getpid(), resp.status_code, resp.text[:10])
if __name__ == '__main__':
# tps_pool = TpsThreadpoolExecutor(tps=7) # 这个是单机控频
# tps_pool = DistributedTpsThreadpoolExecutor(tps=7, pool_identify='pool_for_use_print') # 这个是redis分布式控频,不是基于频繁incr计数的,是基消费者数量统计的。
tps_pool = TpsThreadpoolExecutorWithMultiProcess(tps=8, process_num=3) # 这个是redis分布式控频,不是基于incr计数的,是基于
# tps_pool = DistributedTpsThreadpoolExecutorWithMultiProcess(tps=4, pool_identify='pool_for_use_print', redis_url='redis://:372148@127.0.0.1/0', process_num=5) # 这个是redis分布式控频,不是基于incr计数的,是基于
for i in range(100):
tps_pool.submit(f1, i)
# tps_pool.submit(f2, i * 10)
# tps_pool.submit(request_baidu)
"""
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file tps_threadpool_executor-1.4.tar.gz
.
File metadata
- Download URL: tps_threadpool_executor-1.4.tar.gz
- Upload date:
- Size: 6.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 165efb54c2607c05a965b1e79f9c836e5667ee052c4840d84983fa3bfe9b3bf8 |
|
MD5 | 21c6472637d7893fb5958acb9e8fea81 |
|
BLAKE2b-256 | 57d538a5f9306923c19c36dd728dfb940f7e9786c71f8225d74efee8a4abd1a9 |