Skip to main content

A Python application with a Dash frontend, services to fetch market data, and an API server.

Project description

Machine Learning Models

Tradestream uses a variety of machine learning models to predict the future price of a stock. The models are trained on historical data and use a variety of features to make predictions. The models are trained on a daily basis and the predictions are made on a minute-by-minute basis.

Machine Learning Libraries

Tradestream researched the following machine learning libraries:

- [TensorFlow](https://www.tensorflow.org/)
- [LSTM](https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM)
- [GRU](https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU)
- [Transformer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Transformer)
- [PyTorch](https://pytorch.org/)
- [LSTM](https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html)
- [GRU](https://pytorch.org/docs/stable/generated/torch.nn.GRU.html)
- [Transformer](https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html)
- [Scikit-learn](https://scikit-learn.org/)
- [Ridge](https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression)
- [Lasso](https://scikit-learn.org/stable/modules/linear_model.html#lasso)
- [ElasticNet](https://scikit-learn.org/stable/modules/linear_model.html#elastic-net)
- [RandomForest](https://scikit-learn.org/stable/modules/ensemble.html#random-forests)
- [GradientBoosting](https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting)
- [AdaBoost](https://scikit-learn.org/stable/modules/ensemble.html#adaboost)
- [Stacking](https://scikit-learn.org/stable/modules/ensemble.html#stacking)
- [Voting](https://scikit-learn.org/stable/modules/ensemble.html#voting)
- [Bagging](https://scikit-learn.org/stable/modules/ensemble.html#bagging)
- [ExtraTrees](https://scikit-learn.org/stable/modules/ensemble.html#extra-trees)
- [IsolationForest](https://scikit-learn.org/stable/modules/ensemble.html#isolation-forest)
- [LocalOutlierFactor](https://scikit-learn.org/stable/modules/neighbors.html#local-outlier-factor)
- [XGBoost](https://xgboost.readthedocs.io/en/stable/)
- [XGBRegressor](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRegressor)
- [XGBClassifier](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier)
- [LightGBM](https://lightgbm.readthedocs.io/en/latest/)
- [LGBMRegressor](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html)
- [LGBMClassifier](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html)
- [CatBoost](https://catboost.ai/)
- [CatBoostRegressor](https://catboost.ai/docs/concepts/python-reference_catboostregressor.html)
- [CatBoostClassifier](https://catboost.ai/docs/concepts/python-reference_catboostclassifier.html)
- [Prophet](https://facebook.github.io/prophet/)
- [ProphetRegressor](https://facebook.github.io/prophet/docs/python/python_api.html#prophet.ProphetRegressor)
- [ProphetClassifier](https://facebook.github.io/prophet/docs/python/python_api.html#prophet.ProphetClassifier)

Contributing to Tradestream

We welcome contributions to Tradestream! Please open an issue or submit a pull request with your changes. You can find the pull request template in the .github/pull_request_template.md file. If you have any questions, please open an issue and we will be happy to help. You can also find us on the Tradestream Discord if you have any questions. It is very important that you follow the Contributing Guidelines when contributing to Tradestream. We look forward to seeing your contributions!

Project Structure

Tradestream is a Python application that uses the Dash framework for the frontend and the Flask framework for the backend. The application is deployed to Heroku. The project is organized as follows:

tradestream/                 # Main directory for the application

├── dash_app/                # Directory for the Dash app (frontend)
   ├── __init__.py          # Initialize the Dash app, include authentication
   ├── layout.py            # Define the layout of the Dash app
   ├── callbacks.py         # Define callbacks for interactivity
   └── authentication.py    # Handle user authentication

├── services/                # Directory for services that fetch real-time market data
   ├── __init__.py          # Initialization for services
   ├── market_fetcher.py    # Code to fetch real-time data from the markets
   └── scheduler.py         # Schedule tasks to fetch data at intervals

├── api/                     # Directory for the API server
   ├── __init__.py          # Initialization for API server
   ├── routes.py            # Define API routes
   ├── models.py            # Define MongoDB models using ODM (like PyMongo or Motor)
   └── views.py             # API views (logic to handle requests)

├── config.py                # Configuration file (environment variables, DB settings, etc.)
├── Procfile                 # Define process types for Heroku (e.g., web, worker)
├── requirements.txt         # Python dependencies
└── wsgi.py                  # Entry point for the application (for Heroku to run the app)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tradestream-0.1.1.tar.gz (13.0 kB view details)

Uploaded Source

Built Distribution

tradestream-0.1.1-py3-none-any.whl (14.0 kB view details)

Uploaded Python 3

File details

Details for the file tradestream-0.1.1.tar.gz.

File metadata

  • Download URL: tradestream-0.1.1.tar.gz
  • Upload date:
  • Size: 13.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Darwin/23.4.0

File hashes

Hashes for tradestream-0.1.1.tar.gz
Algorithm Hash digest
SHA256 991b800ba2f440e377cc55a9b66d62d6371e7bc7c0d9f4ccebc5e29440a27dfe
MD5 8fe77dab474410cb574a79f808879874
BLAKE2b-256 ccdcc9dff13c290d57d7ec265dcd436ce1723b3e6fb8dacf1e6f9b599d9e3ae9

See more details on using hashes here.

File details

Details for the file tradestream-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: tradestream-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 14.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Darwin/23.4.0

File hashes

Hashes for tradestream-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 81696347c1e9ad0f6c9e2381550ad120e948e68cb23868b563db9d25442caae8
MD5 a004422cad1eb6fd190c0d4344f32cb0
BLAKE2b-256 afa01839fcd2f66198b7ca0aed44e5308aa5d7effc9781cb112f0d56d2d838dc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page