Skip to main content

A Python application with a Dash frontend, services to fetch market data, and an API server.

Project description

Machine Learning Models

Tradestream uses a variety of machine learning models to predict the future price of a stock. The models are trained on historical data and use a variety of features to make predictions. The models are trained on a daily basis and the predictions are made on a minute-by-minute basis.

Machine Learning Libraries

Tradestream researched the following machine learning libraries:

- [TensorFlow](https://www.tensorflow.org/)
- [LSTM](https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM)
- [GRU](https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU)
- [Transformer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Transformer)
- [PyTorch](https://pytorch.org/)
- [LSTM](https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html)
- [GRU](https://pytorch.org/docs/stable/generated/torch.nn.GRU.html)
- [Transformer](https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html)
- [Scikit-learn](https://scikit-learn.org/)
- [Ridge](https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression)
- [Lasso](https://scikit-learn.org/stable/modules/linear_model.html#lasso)
- [ElasticNet](https://scikit-learn.org/stable/modules/linear_model.html#elastic-net)
- [RandomForest](https://scikit-learn.org/stable/modules/ensemble.html#random-forests)
- [GradientBoosting](https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting)
- [AdaBoost](https://scikit-learn.org/stable/modules/ensemble.html#adaboost)
- [Stacking](https://scikit-learn.org/stable/modules/ensemble.html#stacking)
- [Voting](https://scikit-learn.org/stable/modules/ensemble.html#voting)
- [Bagging](https://scikit-learn.org/stable/modules/ensemble.html#bagging)
- [ExtraTrees](https://scikit-learn.org/stable/modules/ensemble.html#extra-trees)
- [IsolationForest](https://scikit-learn.org/stable/modules/ensemble.html#isolation-forest)
- [LocalOutlierFactor](https://scikit-learn.org/stable/modules/neighbors.html#local-outlier-factor)
- [XGBoost](https://xgboost.readthedocs.io/en/stable/)
- [XGBRegressor](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRegressor)
- [XGBClassifier](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier)
- [LightGBM](https://lightgbm.readthedocs.io/en/latest/)
- [LGBMRegressor](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html)
- [LGBMClassifier](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html)
- [CatBoost](https://catboost.ai/)
- [CatBoostRegressor](https://catboost.ai/docs/concepts/python-reference_catboostregressor.html)
- [CatBoostClassifier](https://catboost.ai/docs/concepts/python-reference_catboostclassifier.html)
- [Prophet](https://facebook.github.io/prophet/)
- [ProphetRegressor](https://facebook.github.io/prophet/docs/python/python_api.html#prophet.ProphetRegressor)
- [ProphetClassifier](https://facebook.github.io/prophet/docs/python/python_api.html#prophet.ProphetClassifier)

Contributing to Tradestream

We welcome contributions to Tradestream! Please open an issue or submit a pull request with your changes. You can find the pull request template in the .github/pull_request_template.md file. If you have any questions, please open an issue and we will be happy to help. You can also find us on the Tradestream Discord if you have any questions. It is very important that you follow the Contributing Guidelines when contributing to Tradestream. We look forward to seeing your contributions!

Project Structure

Tradestream is a Python application that uses the Dash framework for the frontend and the Flask framework for the backend. The application is deployed to Heroku. The project is organized as follows:

tradestream/                 # Main directory for the application

├── dash_app/                # Directory for the Dash app (frontend)
   ├── __init__.py          # Initialize the Dash app, include authentication
   ├── layout.py            # Define the layout of the Dash app
   ├── callbacks.py         # Define callbacks for interactivity
   └── authentication.py    # Handle user authentication

├── services/                # Directory for services that fetch real-time market data
   ├── __init__.py          # Initialization for services
   ├── market_fetcher.py    # Code to fetch real-time data from the markets
   └── scheduler.py         # Schedule tasks to fetch data at intervals

├── api/                     # Directory for the API server
   ├── __init__.py          # Initialization for API server
   ├── routes.py            # Define API routes
   ├── models.py            # Define MongoDB models using ODM (like PyMongo or Motor)
   └── views.py             # API views (logic to handle requests)

├── config.py                # Configuration file (environment variables, DB settings, etc.)
├── Procfile                 # Define process types for Heroku (e.g., web, worker)
├── requirements.txt         # Python dependencies
└── wsgi.py                  # Entry point for the application (for Heroku to run the app)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tradestream-0.1.4.tar.gz (14.1 kB view details)

Uploaded Source

Built Distribution

tradestream-0.1.4-py3-none-any.whl (15.2 kB view details)

Uploaded Python 3

File details

Details for the file tradestream-0.1.4.tar.gz.

File metadata

  • Download URL: tradestream-0.1.4.tar.gz
  • Upload date:
  • Size: 14.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Darwin/23.4.0

File hashes

Hashes for tradestream-0.1.4.tar.gz
Algorithm Hash digest
SHA256 41940a63525fba97b4eaa2de2fe145822aee6eaf97791c2731c2a77114a104f2
MD5 1b26307f82c3df9b066016b0ae98ce3a
BLAKE2b-256 f0f0e5b4c7572a609be6110dc5ee55479607c5dcda0b33e1b11cc0e56a076f16

See more details on using hashes here.

File details

Details for the file tradestream-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: tradestream-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 15.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Darwin/23.4.0

File hashes

Hashes for tradestream-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 f5ca808516badee9e8bd291f0bd1e2bd622c08aa146b7f3b20053f250e693b32
MD5 eca45df9d358a1736a8fd1f190ed2eb5
BLAKE2b-256 431d208bc350e779a899c12959226c03b150758210d4ca4498d7b55f43cf75e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page