Skip to main content

A Python application with a Dash frontend, services to fetch market data, and an API server.

Project description

Machine Learning Models

Tradestream uses a variety of machine learning models to predict the future price of a stock. The models are trained on historical data and use a variety of features to make predictions. The models are trained on a daily basis and the predictions are made on a minute-by-minute basis.

Machine Learning Libraries

Tradestream researched the following machine learning libraries:

- [TensorFlow](https://www.tensorflow.org/)
- [LSTM](https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM)
- [GRU](https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU)
- [Transformer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Transformer)
- [PyTorch](https://pytorch.org/)
- [LSTM](https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html)
- [GRU](https://pytorch.org/docs/stable/generated/torch.nn.GRU.html)
- [Transformer](https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html)
- [Scikit-learn](https://scikit-learn.org/)
- [Ridge](https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression)
- [Lasso](https://scikit-learn.org/stable/modules/linear_model.html#lasso)
- [ElasticNet](https://scikit-learn.org/stable/modules/linear_model.html#elastic-net)
- [RandomForest](https://scikit-learn.org/stable/modules/ensemble.html#random-forests)
- [GradientBoosting](https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting)
- [AdaBoost](https://scikit-learn.org/stable/modules/ensemble.html#adaboost)
- [Stacking](https://scikit-learn.org/stable/modules/ensemble.html#stacking)
- [Voting](https://scikit-learn.org/stable/modules/ensemble.html#voting)
- [Bagging](https://scikit-learn.org/stable/modules/ensemble.html#bagging)
- [ExtraTrees](https://scikit-learn.org/stable/modules/ensemble.html#extra-trees)
- [IsolationForest](https://scikit-learn.org/stable/modules/ensemble.html#isolation-forest)
- [LocalOutlierFactor](https://scikit-learn.org/stable/modules/neighbors.html#local-outlier-factor)
- [XGBoost](https://xgboost.readthedocs.io/en/stable/)
- [XGBRegressor](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRegressor)
- [XGBClassifier](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier)
- [LightGBM](https://lightgbm.readthedocs.io/en/latest/)
- [LGBMRegressor](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html)
- [LGBMClassifier](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html)
- [CatBoost](https://catboost.ai/)
- [CatBoostRegressor](https://catboost.ai/docs/concepts/python-reference_catboostregressor.html)
- [CatBoostClassifier](https://catboost.ai/docs/concepts/python-reference_catboostclassifier.html)
- [Prophet](https://facebook.github.io/prophet/)
- [ProphetRegressor](https://facebook.github.io/prophet/docs/python/python_api.html#prophet.ProphetRegressor)
- [ProphetClassifier](https://facebook.github.io/prophet/docs/python/python_api.html#prophet.ProphetClassifier)

Contributing to Tradestream

We welcome contributions to Tradestream! Please open an issue or submit a pull request with your changes. You can find the pull request template in the .github/pull_request_template.md file. If you have any questions, please open an issue and we will be happy to help. You can also find us on the Tradestream Discord if you have any questions. It is very important that you follow the Contributing Guidelines when contributing to Tradestream. We look forward to seeing your contributions!

Project Structure

Tradestream is a Python application that uses the Dash framework for the frontend and the Flask framework for the backend. The application is deployed to Heroku. The project is organized as follows:

tradestream/                 # Main directory for the application

├── dash_app/                # Directory for the Dash app (frontend)
   ├── __init__.py          # Initialize the Dash app, include authentication
   ├── layout.py            # Define the layout of the Dash app
   ├── callbacks.py         # Define callbacks for interactivity
   └── authentication.py    # Handle user authentication

├── services/                # Directory for services that fetch real-time market data
   ├── __init__.py          # Initialization for services
   ├── market_fetcher.py    # Code to fetch real-time data from the markets
   └── scheduler.py         # Schedule tasks to fetch data at intervals

├── api/                     # Directory for the API server
   ├── __init__.py          # Initialization for API server
   ├── routes.py            # Define API routes
   ├── models.py            # Define MongoDB models using ODM (like PyMongo or Motor)
   └── views.py             # API views (logic to handle requests)

├── config.py                # Configuration file (environment variables, DB settings, etc.)
├── Procfile                 # Define process types for Heroku (e.g., web, worker)
├── requirements.txt         # Python dependencies
└── wsgi.py                  # Entry point for the application (for Heroku to run the app)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tradestream-0.1.5.tar.gz (14.1 kB view details)

Uploaded Source

Built Distribution

tradestream-0.1.5-py3-none-any.whl (15.2 kB view details)

Uploaded Python 3

File details

Details for the file tradestream-0.1.5.tar.gz.

File metadata

  • Download URL: tradestream-0.1.5.tar.gz
  • Upload date:
  • Size: 14.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Darwin/23.4.0

File hashes

Hashes for tradestream-0.1.5.tar.gz
Algorithm Hash digest
SHA256 7c92bab529030b9ec2280b63395e988e6fd9e384124944f5914ec1d7240b765a
MD5 02329420cdc7de0c7f75f1045d8b84ef
BLAKE2b-256 7b7315fee0383954a4996b6d23819787d0ba917d0d28f093b42019e3a3403faf

See more details on using hashes here.

File details

Details for the file tradestream-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: tradestream-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 15.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Darwin/23.4.0

File hashes

Hashes for tradestream-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 ed82185772d8da5027c05be6bfdb7a628571cfe5fa044d6e0833fbd918cd1aa3
MD5 1debb570f7091696aaa6c39192f91db9
BLAKE2b-256 8e600c123253e9ed589ee9486086cd407fa64df17f8d4f2236b9089862f811e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page