Skip to main content

A Python application with a Dash frontend, services to fetch market data, and an API server.

Project description

Machine Learning Models

Tradestream uses a variety of machine learning models to predict the future price of a stock. The models are trained on historical data and use a variety of features to make predictions. The models are trained on a daily basis and the predictions are made on a minute-by-minute basis.

Machine Learning Libraries

Tradestream researched the following machine learning libraries:

- [TensorFlow](https://www.tensorflow.org/)
- [LSTM](https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM)
- [GRU](https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU)
- [Transformer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Transformer)
- [PyTorch](https://pytorch.org/)
- [LSTM](https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html)
- [GRU](https://pytorch.org/docs/stable/generated/torch.nn.GRU.html)
- [Transformer](https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html)
- [Scikit-learn](https://scikit-learn.org/)
- [Ridge](https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression)
- [Lasso](https://scikit-learn.org/stable/modules/linear_model.html#lasso)
- [ElasticNet](https://scikit-learn.org/stable/modules/linear_model.html#elastic-net)
- [RandomForest](https://scikit-learn.org/stable/modules/ensemble.html#random-forests)
- [GradientBoosting](https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting)
- [AdaBoost](https://scikit-learn.org/stable/modules/ensemble.html#adaboost)
- [Stacking](https://scikit-learn.org/stable/modules/ensemble.html#stacking)
- [Voting](https://scikit-learn.org/stable/modules/ensemble.html#voting)
- [Bagging](https://scikit-learn.org/stable/modules/ensemble.html#bagging)
- [ExtraTrees](https://scikit-learn.org/stable/modules/ensemble.html#extra-trees)
- [IsolationForest](https://scikit-learn.org/stable/modules/ensemble.html#isolation-forest)
- [LocalOutlierFactor](https://scikit-learn.org/stable/modules/neighbors.html#local-outlier-factor)
- [XGBoost](https://xgboost.readthedocs.io/en/stable/)
- [XGBRegressor](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRegressor)
- [XGBClassifier](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier)
- [LightGBM](https://lightgbm.readthedocs.io/en/latest/)
- [LGBMRegressor](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html)
- [LGBMClassifier](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html)
- [CatBoost](https://catboost.ai/)
- [CatBoostRegressor](https://catboost.ai/docs/concepts/python-reference_catboostregressor.html)
- [CatBoostClassifier](https://catboost.ai/docs/concepts/python-reference_catboostclassifier.html)
- [Prophet](https://facebook.github.io/prophet/)
- [ProphetRegressor](https://facebook.github.io/prophet/docs/python/python_api.html#prophet.ProphetRegressor)
- [ProphetClassifier](https://facebook.github.io/prophet/docs/python/python_api.html#prophet.ProphetClassifier)

Contributing to Tradestream

We welcome contributions to Tradestream! Please open an issue or submit a pull request with your changes. You can find the pull request template in the .github/pull_request_template.md file. If you have any questions, please open an issue and we will be happy to help. You can also find us on the Tradestream Discord if you have any questions. It is very important that you follow the Contributing Guidelines when contributing to Tradestream. We look forward to seeing your contributions!

Project Structure

Tradestream is a Python application that uses the Dash framework for the frontend and the Flask framework for the backend. The application is deployed to Heroku. The project is organized as follows:

tradestream/                 # Main directory for the application

├── dash_app/                # Directory for the Dash app (frontend)
   ├── __init__.py          # Initialize the Dash app, include authentication
   ├── layout.py            # Define the layout of the Dash app
   ├── callbacks.py         # Define callbacks for interactivity
   └── authentication.py    # Handle user authentication

├── services/                # Directory for services that fetch real-time market data
   ├── __init__.py          # Initialization for services
   ├── market_fetcher.py    # Code to fetch real-time data from the markets
   └── scheduler.py         # Schedule tasks to fetch data at intervals

├── api/                     # Directory for the API server
   ├── __init__.py          # Initialization for API server
   ├── routes.py            # Define API routes
   ├── models.py            # Define MongoDB models using ODM (like PyMongo or Motor)
   └── views.py             # API views (logic to handle requests)

├── config.py                # Configuration file (environment variables, DB settings, etc.)
├── Procfile                 # Define process types for Heroku (e.g., web, worker)
├── requirements.txt         # Python dependencies
└── wsgi.py                  # Entry point for the application (for Heroku to run the app)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tradestream-0.5.4.tar.gz (15.2 kB view details)

Uploaded Source

Built Distribution

tradestream-0.5.4-py3-none-any.whl (17.3 kB view details)

Uploaded Python 3

File details

Details for the file tradestream-0.5.4.tar.gz.

File metadata

  • Download URL: tradestream-0.5.4.tar.gz
  • Upload date:
  • Size: 15.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Darwin/23.4.0

File hashes

Hashes for tradestream-0.5.4.tar.gz
Algorithm Hash digest
SHA256 e6ba8cca9627867c3db1fadd2cf6b512b4f571d4a84a4c5e5abf81d6fc1cad17
MD5 757ed260716dca565ee62f298dea2d03
BLAKE2b-256 7465ee8f0073d9e68ba66c03b9315f9440a66350e328d5ef602a9cc34976f94f

See more details on using hashes here.

File details

Details for the file tradestream-0.5.4-py3-none-any.whl.

File metadata

  • Download URL: tradestream-0.5.4-py3-none-any.whl
  • Upload date:
  • Size: 17.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Darwin/23.4.0

File hashes

Hashes for tradestream-0.5.4-py3-none-any.whl
Algorithm Hash digest
SHA256 aa55be900791681839aed808f0cd722e43833bed00aa713d3b64b9693b83266f
MD5 98c61fc794bfc5c61668d4fb11f1ef32
BLAKE2b-256 ceb335d1d2ec9165cc8b01f0e0e3424cc1ce03c4578b2eea7e2797e8b4ac01db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page