Library to create simulation to find out what train test ratio is ideal
Project description
English | Español | Français | Deutsch | 中文 | Türkçe | 日本語 | 한국어
train_test_sim
A library to create quick simulation of optimal train-test size you can keep
Developed by Marcel Tino (c) 2024
Examples of How To Use the library
You can use this to alter according to your requirements
##syntax
from train_test_sim import get_simulation
model=RandomForestClassifier()
get_simulation(X,Y,model)
you can use any model on sklearn or xgboost. All you need to do is specify correct model name
from train_test_sim import get_simulation
from sklearn.datasets import load_diabetes
import numpy as np
from sklearn.ensemble import RandomForestClassifier
diabetes = load_diabetes()
X, y = diabetes.data, diabetes.target
# Convert the target variable to binary (1 for diabetes, 0 for no diabetes)
Y = (y > np.median(y)).astype(int)
model = RandomForestClassifier()
get_simulation(X, Y, model)
Note: We can create this for any model
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
train_test_sim-0.1.1.tar.gz
(3.1 kB
view details)
Built Distribution
File details
Details for the file train_test_sim-0.1.1.tar.gz
.
File metadata
- Download URL: train_test_sim-0.1.1.tar.gz
- Upload date:
- Size: 3.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0acc616d1a46d326b1f9cc63c89cd31443a29d5fa0a86cc41084eb17a4d3cd10 |
|
MD5 | e00d698bf6ea53d3fb7f64eaad0f73c5 |
|
BLAKE2b-256 | 4c69baeb4174faa8f2a68bcc814b2eca316e07d091cc65d3ecb799c4129c561b |
File details
Details for the file train_test_sim-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: train_test_sim-0.1.1-py3-none-any.whl
- Upload date:
- Size: 3.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 49ebeefab7b8becd4e025bd5b0c182fb8805343904ab7001b37643eefeaaa4e6 |
|
MD5 | 8cc92afae10996e528d345803880a1e8 |
|
BLAKE2b-256 | 08e20e071cdf0b442c7cf6f0e7cf6df48879b6293c82fb796a3728266190ba0b |