Skip to main content

No bullshit, dead simple training visualizer for tf-keras.

Project description

Training Dashboard

A no bullshit, dead simple training visualizer for tf-keras.

Usage

TrainingDashboard is meant to be used as a callback passed to the fit() function.

  from training_dashboard import TrainingDashboard
  callback = TrainingDashboard(validation=True,
                               min_loss=0,
                               metrics=["accuracy", "auc"],
                               batch_step=10,
                               min_metric_dict={"accuracy": 0, "auc": 0},
                               max_metric_dict={"accuracy": 1, "auc": 1})
  model.fit(x_train,
            y_train,
            batch_size=512,
            epochs=25,
            verbose=1,
            validation_split=0.2,
            callbacks=[callback])

Example Output

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

training_dashboard-0.1.0.tar.gz (5.3 kB view details)

Uploaded Source

File details

Details for the file training_dashboard-0.1.0.tar.gz.

File metadata

  • Download URL: training_dashboard-0.1.0.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.5.0.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.4

File hashes

Hashes for training_dashboard-0.1.0.tar.gz
Algorithm Hash digest
SHA256 eade311917c2c53b068bf66d4dab241601e930c09bfde614f2b8bfe089f338d6
MD5 7ffdf714255a640401bf25a4bc766ff9
BLAKE2b-256 0ac402e3945c7c24bf06c52398d28794cca473fcc4f6b321ee64bf20288f4fb7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page