Skip to main content

tune with optuna and model

Project description

trainme - documentation

Authors

kaggle-autolgb

trainer is a combination of xgboost, lightgbm and optuna. I tried to make kaggle monthly competition simple. Its only working with classification problem.

Installation

pip install trainer

Features

  • autotune
  • autotrain
  • auto submission file generate
  • auto prediction

Deployment

from src.read_data import ReadFile

s = ReadFile(
	train_path="/home/aditta/Desktop/trainme/trainme/input/multi_class_classification.csv",
	test_path="/home/aditta/Desktop/trainme/trainme/input/multi_class_classification_test.csv",
	label="target",
    	task_type="multi_classification",
	compare=False,
	fold="skfold",
	model_name="xgb",
	output_path="/media/aditta/NewVolume/amazon",
	study_name="new_train",
	store_file ="out9",
	n_trials=1
)

print(s.report())
print(s.train())

License

Apache 2.0

Project details


Release history Release notifications | RSS feed

This version

1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

trainme-1.0.tar.gz (10.6 kB view details)

Uploaded Source

Built Distribution

trainme-1.0-py3-none-any.whl (16.4 kB view details)

Uploaded Python 3

File details

Details for the file trainme-1.0.tar.gz.

File metadata

  • Download URL: trainme-1.0.tar.gz
  • Upload date:
  • Size: 10.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for trainme-1.0.tar.gz
Algorithm Hash digest
SHA256 fda7f3bae91a286922d97229b100ae8b9190a56f3822e5445fa5f9202d19450a
MD5 c9594217e2c524b9f3b1583ce7475643
BLAKE2b-256 c47ce753d1d459afcb5f9bed487b69be246752dbd6356af0fed7f5f8563b10c0

See more details on using hashes here.

File details

Details for the file trainme-1.0-py3-none-any.whl.

File metadata

  • Download URL: trainme-1.0-py3-none-any.whl
  • Upload date:
  • Size: 16.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for trainme-1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3e399f1506e412bdbcbf214cc3a3c53ca0efaf942d40e38110b5f9dfb7079c18
MD5 dac30e272ded199773a31dcc61c02c11
BLAKE2b-256 1836a2ee4aae64a5d1430e1643bfed535e3977a933d5092c37f63bd4ae4e50b3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page