tune with optuna and model
Project description
trainme - documentation
Authors
kaggle-autolgb
trainer is a combination of xgboost, lightgbm and optuna. I tried to make kaggle monthly competition simple. Its only working with classification problem.
Installation
pip install trainer
Features
- autotune
- autotrain
- auto submission file generate
- auto prediction
Deployment
from src.read_data import ReadFile
s = ReadFile(
train_path="/home/aditta/Desktop/trainme/trainme/input/multi_class_classification.csv",
test_path="/home/aditta/Desktop/trainme/trainme/input/multi_class_classification_test.csv",
label="target",
task_type="multi_classification",
compare=False,
fold="skfold",
model_name="xgb",
output_path="/media/aditta/NewVolume/amazon",
study_name="new_train",
store_file ="out9",
n_trials=1
)
print(s.report())
print(s.train())
License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
trainme-1.0.tar.gz
(10.6 kB
view details)
Built Distribution
trainme-1.0-py3-none-any.whl
(16.4 kB
view details)
File details
Details for the file trainme-1.0.tar.gz
.
File metadata
- Download URL: trainme-1.0.tar.gz
- Upload date:
- Size: 10.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fda7f3bae91a286922d97229b100ae8b9190a56f3822e5445fa5f9202d19450a |
|
MD5 | c9594217e2c524b9f3b1583ce7475643 |
|
BLAKE2b-256 | c47ce753d1d459afcb5f9bed487b69be246752dbd6356af0fed7f5f8563b10c0 |
File details
Details for the file trainme-1.0-py3-none-any.whl
.
File metadata
- Download URL: trainme-1.0-py3-none-any.whl
- Upload date:
- Size: 16.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3e399f1506e412bdbcbf214cc3a3c53ca0efaf942d40e38110b5f9dfb7079c18 |
|
MD5 | dac30e272ded199773a31dcc61c02c11 |
|
BLAKE2b-256 | 1836a2ee4aae64a5d1430e1643bfed535e3977a933d5092c37f63bd4ae4e50b3 |