Skip to main content

Serializable schema using traits

Project description


.. image::

.. image::
:alt: Documentation Status

.. image::

.. image::

Create serializable, type-checked schema using traits_ and Numpy. A typical use
case involves saving several Numpy arrays of varying shape and type.

.. _traits:

Defining schema

.. note::

The following assumes a basic familiarity with the ``traits`` package. See
its `documentation <>`_ for details.

In order to be able to properly serialize data, non-scalar traits should be
declared as a ``traits.api.Array`` type. Example:

.. code-block:: python

import numpy as np
from traits.api import Array, String
from traitschema import Schema

class NamedMatrix(Schema):
name = String()
data = Array(dtype=np.float64)

matrix = NamedMatrix(name="name", data=np.random.random((8, 8)))

For other demos, see the ``demos`` directory.

Saving and loading

Data can be stored in the following formats:

* HDF5 via ``h5py``
* JSON via the standard library ``json`` module
* Numpy ``npz`` format

Multiple schema can be saved at once to a zip file via
:func:`traitschema.bundle_schema` and loaded with

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
traitschema-1.2.0-py2.py3-none-any.whl (8.8 kB) Copy SHA256 hash SHA256 Wheel py2.py3

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page