Skip to main content

Trajnet tools.

Project description

Tools

  • summary table and plots: python -m trajnettools.summarize <dataset_files>

  • plot sample trajectories: python -m trajnettools.trajectories <dataset_file>

  • visualize interactions: python -m trajnettools.visualize_interactions <dataset_file> --interaction_type 'ca'

  • obtain distribution of trajectory types: python -m trajnettools.dataset_stats <dataset_file>

APIs

  • trajnettools.Reader: class to read the dataset_file

  • trajnettools.show: module containing contexts for visualizing rows and paths

  • trajnettools.writers: write a trajnet dataset file

  • trajnettools.metrics: contains unimodal metrics: average_l2(), final_l2() and collision() and multimodal metrics: topk() and nll() implementations

Dataset

Datasets are split into train, val and test set. Every line is a self contained JSON string (ndJSON).

Scene:

{"scene": {"id": 266, "p": 254, "s": 10238, "e": 10358, "fps": 2.5, "tag": 2}}

Track:

{"track": {"f": 10238, "p": 248, "x": 13.2, "y": 5.85}}

with:

  • id: scene id

  • p: pedestrian id

  • s, e: start and end frame id

  • fps: frame rate

  • tag: trajectory type

  • f: frame id

  • x, y: x- and y-coordinate in meters

  • pred_number: (optional) prediction number for multiple output predictions

  • scene_id: (optional) corresponding scene_id for multiple output predictions

Frame numbers are not recomputed. Rows are resampled to about 2.5 rows per second.

Dev

pylint trajnettools
python -m pytest
# optional: mypy trajnettools --disallow-untyped-defs

Dataset Summaries

biwi_hotel:

docs/train/biwi_hotel.ndjson.theta.png docs/train/biwi_hotel.ndjson.speed.png

crowds_students001:

docs/train/crowds_students001.ndjson.theta.png docs/train/crowds_students001.ndjson.speed.png

crowds_students003:

docs/train/crowds_students003.ndjson.theta.png docs/train/crowds_students003.ndjson.speed.png

crowds_zara02:

docs/train/crowds_zara02.ndjson.theta.png docs/train/crowds_zara02.ndjson.speed.png

crowds_zara03:

docs/train/crowds_zara03.ndjson.theta.png docs/train/crowds_zara03.ndjson.speed.png

dukemtmc:

docs/train/dukemtmc.ndjson.theta.png docs/train/dukemtmc.ndjson.speed.png

syi:

docs/train/syi.ndjson.theta.png docs/train/syi.ndjson.speed.png

wildtrack:

docs/train/wildtrack.ndjson.theta.png docs/train/wildtrack.ndjson.speed.png

Interactions

leader_follower:

docs/train/crowds_zara02.ndjson_1_9.png docs/train/crowds_zara02.ndjson_1_9_full.png

collision_avoidance:

docs/train/crowds_zara02.ndjson_2_25.png docs/train/crowds_zara02.ndjson_2_25_full.png

group:

docs/train/crowds_zara02.ndjson_3_9.png docs/train/crowds_zara02.ndjson_3_9_full.png

others:

docs/train/crowds_zara02.ndjson_4_13.png docs/train/crowds_zara02.ndjson_4_13_full.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

trajnettools-0.3.0.tar.gz (13.6 kB view details)

Uploaded Source

Built Distribution

trajnettools-0.3.0-py2.py3-none-any.whl (19.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file trajnettools-0.3.0.tar.gz.

File metadata

  • Download URL: trajnettools-0.3.0.tar.gz
  • Upload date:
  • Size: 13.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for trajnettools-0.3.0.tar.gz
Algorithm Hash digest
SHA256 ef9494cf6a09df636f0a16d011bd15300f52c920d10d348ecbdd4863d209fa1f
MD5 c03ae730c6e89611b1bae5287793e894
BLAKE2b-256 b712e7eef645baeb6e7e7ba6beae6170d0d91f470342cdd2af7efe8a264b3c9e

See more details on using hashes here.

File details

Details for the file trajnettools-0.3.0-py2.py3-none-any.whl.

File metadata

  • Download URL: trajnettools-0.3.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 19.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for trajnettools-0.3.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 03c920e104a5cc7cb3d7396fdf04c205b2dcaa4553240f5de15c670ffc1e928d
MD5 2df9690fafbe1b751503b69824ec0153
BLAKE2b-256 b847f2ba161f8baf72879c76c47d3b4bbdbb52270717e515870307919650ff66

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page