Skip to main content

Trajnet tools.

Project description

Tools

  • summary table and plots: python -m trajnettools.summarize <dataset_files>

  • plot sample trajectories: python -m trajnettools.trajectories <dataset_file>

  • visualize interactions: python -m trajnettools.visualize_interactions <dataset_file> --interaction_type 'ca'

  • obtain distribution of trajectory types: python -m trajnettools.dataset_stats <dataset_file>

APIs

  • trajnettools.Reader: class to read the dataset_file

  • trajnettools.show: module containing contexts for visualizing rows and paths

  • trajnettools.writers: write a trajnet dataset file

  • trajnettools.metrics: contains unimodal metrics: average_l2(), final_l2() and collision() and multimodal metrics: topk() and nll() implementations

Dataset

Datasets are split into train, val and test set. Every line is a self contained JSON string (ndJSON).

Scene:

{"scene": {"id": 266, "p": 254, "s": 10238, "e": 10358, "fps": 2.5, "tag": 2}}

Track:

{"track": {"f": 10238, "p": 248, "x": 13.2, "y": 5.85}}

with:

  • id: scene id

  • p: pedestrian id

  • s, e: start and end frame id

  • fps: frame rate

  • tag: trajectory type

  • f: frame id

  • x, y: x- and y-coordinate in meters

  • pred_number: (optional) prediction number for multiple output predictions

  • scene_id: (optional) corresponding scene_id for multiple output predictions

Frame numbers are not recomputed. Rows are resampled to about 2.5 rows per second.

Dev

pylint trajnettools
python -m pytest
# optional: mypy trajnettools --disallow-untyped-defs

Dataset Summaries

biwi_hotel:

docs/train/biwi_hotel.ndjson.theta.png docs/train/biwi_hotel.ndjson.speed.png

crowds_students001:

docs/train/crowds_students001.ndjson.theta.png docs/train/crowds_students001.ndjson.speed.png

crowds_students003:

docs/train/crowds_students003.ndjson.theta.png docs/train/crowds_students003.ndjson.speed.png

crowds_zara02:

docs/train/crowds_zara02.ndjson.theta.png docs/train/crowds_zara02.ndjson.speed.png

crowds_zara03:

docs/train/crowds_zara03.ndjson.theta.png docs/train/crowds_zara03.ndjson.speed.png

dukemtmc:

docs/train/dukemtmc.ndjson.theta.png docs/train/dukemtmc.ndjson.speed.png

syi:

docs/train/syi.ndjson.theta.png docs/train/syi.ndjson.speed.png

wildtrack:

docs/train/wildtrack.ndjson.theta.png docs/train/wildtrack.ndjson.speed.png

Interactions

leader_follower:

docs/train/crowds_zara02.ndjson_1_9.png docs/train/crowds_zara02.ndjson_1_9_full.png

collision_avoidance:

docs/train/crowds_zara02.ndjson_2_25.png docs/train/crowds_zara02.ndjson_2_25_full.png

group:

docs/train/crowds_zara02.ndjson_3_9.png docs/train/crowds_zara02.ndjson_3_9_full.png

others:

docs/train/crowds_zara02.ndjson_4_13.png docs/train/crowds_zara02.ndjson_4_13_full.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

trajnettools-0.3.0.tar.gz (13.6 kB view hashes)

Uploaded Source

Built Distribution

trajnettools-0.3.0-py2.py3-none-any.whl (19.2 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page