Skip to main content

Extension of Transformers library for Context-Free Grammar Constrained Decoding with EBNF grammars

Project description

🤗 Transformers CFG

Python 3.8+ License

💭 Latest News

We are thrilled to announce that transformers-cfg has been integrated into the Text-Generation-WebUI project, enabling users to utilize our CFG capabilities within this popular web interface for text generation. For more details, see the relevant pull request.

🚀 Introduction

transformers-cfg is an extension library for the popular Transformers library by Hugging Face, tailored for working with context-free grammars (CFG). This package provides additional tools and functionalities to enhance your experience with natural language processing tasks involving CFGs.

Initially developed as a pull request to the Hugging Face Transformers library, you can find the relevant discussion here.

💻 Installation

  • Stable Version:

    Install the stable version of transformers-cfg using pip:

    pip install transformers-cfg
    
  • Development Version:

    For the latest code and updates, install directly from the GitHub repository:

    pip install git+https://github.com/epfl-dlab/transformers-CFG.git@main
    

    This installs the package from the main branch.

🔧 Quick Start: Force LLM to Generate a Valid JSON Object

Command-Line Interface

transformers-cfg-cli is a command-line tool that allows you to generate text using a model and a grammar. You can specify the model, grammar, prompts, and other parameters to generate text that conforms to the specified grammar.

transformers-cfg-cli generate \
    -m "microsoft/Phi-3-mini-4k-instruct" \
    -g "examples/grammars/json.ebnf" \
    -p "This is a valid json string for http request:" \
    --use_4bit \
    --max_new_tokens 60 \
    --repetition_penalty 1.1
# {"name":"John","age":30,"car":null}

We support also Unicode characters in the grammar:

transformers-cfg-cli generate \
    -m "microsoft/Phi-3-mini-4k-instruct" \
    -g "examples/grammars/chinese.ebnf" \
    -p "Translate the following sentence into Chinese: My neighbor is a very nice person. -> " \
    --use_4bit \
    --max_new_tokens 60 \
    --repetition_penalty 1.1

transformers-cfg-cli generate --help provides a list of available options and arguments.

Click here to see an example of generating a JSON object with minimal changes to HF code, or check it out in examples/generate_json.py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor

if __name__ == "__main__":
    # Detect if GPU is available, otherwise use CPU
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    model_id = "mistralai/Mistral-7B-v0.1"

    # Load model and tokenizer
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.pad_token = tokenizer.eos_token

    model = AutoModelForCausalLM.from_pretrained(model_id).to(device)
    model.generation_config.pad_token_id = model.generation_config.eos_token_id

    # Load JSON grammar
    with open("examples/grammars/json.ebnf", "r") as file:
        grammar_str = file.read()
    grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer)
    grammar_processor = GrammarConstrainedLogitsProcessor(grammar)

    # Generate
    prompts = ["This is a valid json string for http request:", "This is a valid json string for shopping cart:"]
    input_ids = tokenizer(prompts, add_special_tokens=False, return_tensors="pt", padding=True)["input_ids"]

    output = model.generate(
        input_ids,
        max_length=50,
        logits_processor=[grammar_processor],
        repetition_penalty=1.1,
        num_return_sequences=1,
    )
    # Decode output
    generations = tokenizer.batch_decode(output, skip_special_tokens=True)
    print(generations)

    """
    'This is a valid json string for http request:{ "request": { "method": "GET", "headers": [], "content": "Content","type": "application" }}'
    'This is a valid json string for shopping cart:{ "name": "MyCart", "price": 0, "value": 1 }'
    """
Click here to see an example with HF pipeline API, or check it out in examples/pipeline_json.py
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(model_id).to(device)

# Load grammar
with open(f"examples/grammars/json.ebnf", "r") as file:
    grammar_str = file.read()
grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer)
grammar_processor = GrammarConstrainedLogitsProcessor(grammar)

# Initialize pipeline
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    device_map="auto",
    max_length=50,
    batch_size=2,
)

generations = pipe(
    [
        "This is a valid json string for http request: ",
        "This is a valid json string for shopping cart: ",
    ],
    do_sample=False,
    logits_processor=[grammar_processor],
)

💡 Why Should I Use transformers-cfg?

  • EBNF Grammar Support: We support the Extended Backus-Naur Form (EBNF) for grammar description.
  • Seamless Integration: Our grammar interface is compatible with the llama-cpp project, allowing you to replace llama-cpp with transformers-cfg easily.
  • Model Compatibility: Use any model from the 🤗 Transformers library, including those not supported by llama-cpp.
  • Multilingual Grammar Support: We support grammars in multiple languages, allowing you to use characters from various languages, including 中文, 日本語, 한국어, हिन्दी, العربية, עברית, and emoji 🤗.

🤔 What Is a Grammar?

TL;DR: Think of it as an enhanced version of regular expressions.

Here is a simple example of a JSON grammar:
# A JSON object is the root of the grammar
root ::= object

# An object starts with "{" and ends with "}" and contains pairs separated by ","
object ::= "{" pair ("," pair)* "}"

# A pair is a string followed by a ":" and a value
pair ::= string ":" value

# A string is a sequence of alphanumeric characters enclosed in double quotes
string ::= '"' [a-zA-Z0-9]* '"'

# A value can be a string, another object, or a boolean value
value ::= string | object | "true" | "false" | "null"

This grammar describes the structure of a JSON object. It specifies that a JSON object consists of key-value pairs, where the key is a string, and the value can be a string, another object, or a boolean value.

You can use grammars to describe simple but useful constructs, such as valid email addresses, URLs, or phone numbers:

phone_number ::= "+" [0-9]+

For advanced grammar debugging, check out our debugging guide.

Automatic JSON Schema Grammar Conversion[Experimental]

Learn how to automatically create custom grammars for complex JSON objects in our documentation on JSON schema to grammar conversion.

Grammar Collection

We provide a collection of grammars in the examples/grammars folder, which are mostly identical to the grammars in the llama-cpp project. We try to keep these grammars up-to-date with the original project, though we cannot yet guarantee that all grammars from llama-cpp can be directly used in transformers-cfg.

Available grammars include:

Supported Models

See supported_models.yaml for the full list of supported models.

As a rule of thumb, all models with the same tokenizer should be naturally supported.

If you find any model that is not supported, please open an issue or submit a pull request.

Citation

Please consider citing our work if you find the provided resources useful:

@inproceedings{geng-etal-2023-grammar,
	title        = {Grammar-Constrained Decoding for Structured {NLP} Tasks without Finetuning},
	author       = {Geng, Saibo  and Josifoski, Martin  and Peyrard, Maxime  and West, Robert},
	year         = 2023,
	month        = dec,
	booktitle    = {Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing},
	publisher    = {Association for Computational Linguistics},
	address      = {Singapore},
	url          = {https://aclanthology.org/2023.emnlp-main.674},
	editor       = {Bouamor, Houda  and Pino, Juan  and Bali, Kalika}
}

License

This project is licensed under the MIT License.

Acknowledgements

This project is derived from the torch-grammars project, which was itself derived from the llama-cpp project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

transformers_cfg-0.2.6.tar.gz (54.9 kB view details)

Uploaded Source

Built Distribution

transformers_cfg-0.2.6-py3-none-any.whl (68.2 kB view details)

Uploaded Python 3

File details

Details for the file transformers_cfg-0.2.6.tar.gz.

File metadata

  • Download URL: transformers_cfg-0.2.6.tar.gz
  • Upload date:
  • Size: 54.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for transformers_cfg-0.2.6.tar.gz
Algorithm Hash digest
SHA256 566d3e21845106ef2c4cf6b48b62336fa13c30efdaf32bc5eef295e18fc4ac56
MD5 032c3b436429142527173bdc22a1f95c
BLAKE2b-256 f29cfe9dd445247ac48b648c1352630f98dae113e5f521cdfce1817b7425c69b

See more details on using hashes here.

File details

Details for the file transformers_cfg-0.2.6-py3-none-any.whl.

File metadata

File hashes

Hashes for transformers_cfg-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 ff01b044a9a8698422e7b7acaf062ad4486b1a399e7b458db8fc99a6c69cfad3
MD5 6fa0c84d1b75144e33c76120929682d2
BLAKE2b-256 e2671328aebd20a793c2150e3bf2d8ba70e1cb2361fe1a5d75bf16b6a989e25b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page