Skip to main content

No project description provided

Project description

Transformers.js.py 🤗

Test, Build, and Publish PyPI

Use Transformers.js on Pyodide and Pyodide-based frameworks such as JupyterLite, stlite (Streamlit), Shinylive (Shiny for Python), PyScript, HoloViz Panel, and so on.

The original Transformers can't be used in a browser environment. Transformers.js is a JavaScript version of Transformers that can be installed on browsers, but we can't use it from Pyodide. This package is a thin wrapper of Transformers.js to proxy its API to Pyodide.

API

The API is more like Transformers.js than the original Transformers.

Transformers.js Transformers.js.py
import { pipeline } from '@xenova/transformers';

// Allocate a pipeline for sentiment-analysis
let pipe = await pipeline('sentiment-analysis');

let out = await pipe('I love transformers!');
// [{'label': 'POSITIVE', 'score': 0.999817686}]
from transformers_js_py import import_transformers_js

transformers = await import_transformers_js()
pipeline = transformers.pipeline

# Allocate a pipeline for sentiment-analysis
pipe = await pipeline('sentiment-analysis')

out = await pipe('I love transformers!')
# [{'label': 'POSITIVE', 'score': 0.999817686}]

See the Transformers.js document for available features.

Special Case: as_url()

Certain methods of Transformers.js accept a URL as an input. However, when using Transformers.js.py on Pyodide, there may be instances where we want to pass a local file path from the virtual file system, rather than a URL. In such scenarios, the as_url() function can be used to convert a local file path into a URL.

# Example
from transformers_js import import_transformers_js, as_url

transformers = await import_transformers_js()
pipeline = transformers.pipeline
pipe = await pipeline('image-classification')

local_image_path = "/path/to/image.jpg"

input_url = as_url(local_image_path)  # Converts a local file path into a URL that can be passed to `pipe()`
result = await pipe(input_url)

Examples

JupyterLite

JupyterLite screenshot

👉Try this code snippet on https://jupyter.org/try-jupyter/lab/index.html

%pip install transformers_js_py

from transformers_js_py import import_transformers_js

transformers = await import_transformers_js()
pipeline = transformers.pipeline

pipe = await pipeline('sentiment-analysis')

out = await pipe('I love transformers!')

print(out)

stlite (Serverless Streamlit)

stlite sharing screenshot

👉 Online Demo : try out this code online.

import streamlit as st

from transformers_js_py import import_transformers_js

st.title("Sentiment analysis")

text = st.text_input("Input some text", "I love transformers!")

if text:
    with st.spinner():
        transformers = await import_transformers_js()
        pipeline = transformers.pipeline
        if "pipe" not in st.session_state:
            st.session_state["pipe"] = await pipeline('sentiment-analysis')
        pipe = st.session_state["pipe"]
        out = await pipe(text)
    st.write(out)

Gradio-lite

Gradio-lite screenshot

Save the following code as an HTML file and open it in a browser.

<!DOCTYPE html>
<html lang="en">
<head>
  <script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
  <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />
  <title>Transformers.js with Gradio-lite</title>
  <style>
    html, body {
      margin: 0;
      padding: 0;
      height: 100%;
      width: 100%;
    }
    gradio-lite {
      height: 100%;
      width: 100%;
    }
  </style>
</head>
<body>
<gradio-lite>

<gradio-requirements>
transformers_js_py
</gradio-requirements>

<gradio-file name="app.py" entrypoint>
import gradio as gr
from transformers_js_py import import_transformers_js

transformers = await import_transformers_js()
pipeline = transformers.pipeline

pipe = await pipeline('sentiment-analysis')

async def process(text):
    return await pipe(text)

demo = gr.Interface(fn=process, inputs="text", outputs="json")

demo.launch()
</gradio-file>

</gradio-lite>
</body>
</html>

👉 Online demo

For more details about Gradio-lite, please read Gradio-Lite: Serverless Gradio Running Entirely in Your Browser (huggingface.co).

Shinylive

Shinylive screenshot

👉 Online demo : try out this code online.

from shiny import App, render, ui
from transformers_js_py import import_transformers_js

app_ui = ui.page_fluid(
    ui.input_text("text", "Text input", placeholder="Enter text"),
    ui.output_text_verbatim("txt"),
)


def server(input, output, session):
    @output
    @render.text
    async def txt():
        if not input.text():
            return ""

        transformers = await import_transformers_js()
        pipeline = transformers.pipeline

        pipe = await pipeline('sentiment-analysis')

        out = await pipe(input.text())

        return str(out)


app = App(app_ui, server, debug=True)

PyScript

PyScript screenshot

👉Try this code snippet on https://pyscript.com/

<html>
  <head>
    <link rel="stylesheet" href="https://pyscript.net/latest/pyscript.css" />
    <script defer src="https://pyscript.net/latest/pyscript.js"></script>
  </head>
  <body>
    <input type="text" value="" id="text-input" />
    <button py-click="run()" id="run-button">Run</button>

    <py-config>
        packages = ["transformers-js-py"]
    </py-config>
    <py-script>
        import asyncio
        from transformers_js_py import import_transformers_js

        text_input = Element("text-input")

        async def main(input_data):
            transformers = await import_transformers_js()
            pipeline = transformers.pipeline
            pipe = await pipeline('sentiment-analysis')
            out = await pipe(input_data)
            print(out)

        def run():
            print("Start")
            input_data = text_input.value
            if input_data.strip() == "":
                print("No data input.")
                return

            future = asyncio.ensure_future(main(input_data))
    </py-script>
  </body>
</html>

Panel

With HoloViz Panel you develop your app on your laptop and convert it to Pyodide or PyScript by running panel convert.

HoloViz Panel Transformers App

Install the requirements

pip install panel transformers_js_py

Create the app.py file in your favorite editor or IDE.

import panel as pn

pn.extension(sizing_mode="stretch_width", design="material")

@pn.cache
async def _get_pipeline(model="sentiment-analysis"):
    from transformers_js_py import import_transformers_js
    transformers = await import_transformers_js()
    return await transformers.pipeline(model)


text_input = pn.widgets.TextInput(placeholder="Send a message", name="Message")
button = pn.widgets.Button(name="Send", icon="send", align="end", button_type="primary")

@pn.depends(text_input, button)
async def _response(text, event):
    if not text:
        return {}
    pipe = await _get_pipeline()
    return await pipe(text)

pn.Column(
    text_input, button, pn.pane.JSON(_response, depth=2)
).servable()

Convert the app to Pyodide. For more options like hot reload check out the Panel Convert guide.

panel convert app.py --to pyodide-worker --out pyodide --requirements transformers_js_py

Now serve the app

python -m http.server -d pyodide

Finally you can try out the app by opening localhost:8000/app.html

Panel Chat App Example

You can also use transformers_js_py with Panels Chat Components.

HoloViz Panel Transformers App

import panel as pn

MODEL = "sentiment-analysis"
pn.chat.ChatMessage.default_avatars["hugging face"] = "🤗"

pn.extension(design="material")

@pn.cache
async def _get_pipeline(model):
    from transformers_js_py import import_transformers_js
    transformers = await import_transformers_js()
    return await transformers.pipeline(model)

async def callback(contents: str, user: str, instance: pn.chat.ChatInterface):
    pipe = await _get_pipeline(MODEL)
    response = await pipe(contents)
    label, score = response[0]["label"], round(response[0]["score"], 2)
    return f"""I feel a {label} vibe here (score: {score})"""

welcome_message = pn.chat.ChatMessage(
    f"I'm a Hugging Face Transformers `{MODEL}` model.\n\nPlease *send a message*!",
    user="Hugging Face",
)

pn.chat.ChatInterface(
    welcome_message, placeholder_text="Loading the model ...",
    callback=callback, callback_user="Hugging Face",
).servable()

For more chat examples see Panel Chat Examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

transformers_js_py-0.9.0.tar.gz (16.7 kB view hashes)

Uploaded Source

Built Distribution

transformers_js_py-0.9.0-py3-none-any.whl (14.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page