Skip to main content

An optimized transit-fitting algorithm to search for periodic transits of small planets

Project description

Logo

An optimized transit-fitting algorithm to search for periodic transits of small planets

Image Image Image Image Image

Motivation

We present a new method to detect planetary transits from time-series photometry, the Transit Least Squares (TLS) algorithm. While the commonly used Box Least Squares (BLS, Kovács et al. 2002) algorithm searches for rectangular signals in stellar light curves, TLS searches for transit-like features with stellar limb-darkening and including the effects of planetary ingress and egress. Moreover, TLS analyses the entire, unbinned data of the phase-folded light curve. These improvements yield a ~10 % higher detection efficiency (and similar false alarm rates) compared to BLS. The higher detection efficiency of our freely available Python implementation comes at the cost of higher computational load, which we partly compensate by applying an optimized period sampling and transit duration sampling, constrained to the physically plausible range. A typical Kepler K2 light curve, worth of 90 d of observations at a cadence of 30 min, can be searched with TLS in 10 seconds real time on a standard laptop computer, just as with BLS.

image

Installation

The stable version can be installed via pip: pip install tls-package

Dependencies: Python 3, SciPy, NumPy, numba, batman, tqdm, optional: argparse (for the command line version), kplr (for LD and stellar density priors from Kepler K1), astroquery (for LD and stellar density priors from Kepler K2).

Getting started

Here is a short animation of a real search for planets in Kepler K2 data. For more examples, have a look at the tutorials and the documentation.

image

Attribution

Please cite Hippke & Heller (2019, A&A in revision) if you find this code useful in your research. The BibTeX entry for the paper is:

@ARTICLE{2019arXiv190102015H,
       author = {{Hippke}, Michael and {Heller}, Ren{\'e}},
        title = "{Transit Least Squares: An optimized transit detection algorithm to search for periodic transits of small planets}",
      journal = {arXiv e-prints},
     keywords = {Astrophysics - Earth and Planetary Astrophysics, Astrophysics - Instrumentation and Methods for Astrophysics},
         year = 2019,
        month = Jan,
          eid = {arXiv:1901.02015},
        pages = {arXiv:1901.02015},
archivePrefix = {arXiv},
       eprint = {1901.02015},
 primaryClass = {astro-ph.EP},
       adsurl = {https://ui.adsabs.harvard.edu/\#abs/2019arXiv190102015H},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Contributing Code, Bugfixes, or Feedback

We welcome and encourage contributions. If you have any trouble, open an issue.

Copyright 2019 Michael Hippke & René Heller.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

transitleastsquares-1.0.14.tar.gz (39.9 kB view details)

Uploaded Source

Built Distribution

transitleastsquares-1.0.14-py3-none-any.whl (37.4 kB view details)

Uploaded Python 3

File details

Details for the file transitleastsquares-1.0.14.tar.gz.

File metadata

  • Download URL: transitleastsquares-1.0.14.tar.gz
  • Upload date:
  • Size: 39.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for transitleastsquares-1.0.14.tar.gz
Algorithm Hash digest
SHA256 f29e9da6d57e0d653173d92f08a2a0ac99f54f35decb0e55d26e51c8426c9029
MD5 1a0d50048c9f7f668029b0dbb21bff4f
BLAKE2b-256 adb67eef1475cfd3ebd0efb2c63190e1ea3d09eaf77e46497807ef65973a23d3

See more details on using hashes here.

File details

Details for the file transitleastsquares-1.0.14-py3-none-any.whl.

File metadata

  • Download URL: transitleastsquares-1.0.14-py3-none-any.whl
  • Upload date:
  • Size: 37.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for transitleastsquares-1.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 d5356d107473ac22af7ba917ca9a042c9e8a66a35f2dbb6759d510e7cfa37c96
MD5 32a0e1303df6c1c61e77943ea05c8088
BLAKE2b-256 167c27da58c63157f41206266eddb1906dc0b0174ff9c403fe624c8730ef1198

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page