Skip to main content

An optimized transit-fitting algorithm to search for periodic transits of small planets

Project description

Logo

An optimized transit-fitting algorithm to search for periodic transits of small planets

Image Image Image Image Image Build Status

Motivation

We present a new method to detect planetary transits from time-series photometry, the Transit Least Squares (TLS) algorithm. While the commonly used Box Least Squares (BLS, Kovács et al. 2002) algorithm searches for rectangular signals in stellar light curves, TLS searches for transit-like features with stellar limb-darkening and including the effects of planetary ingress and egress. Moreover, TLS analyses the entire, unbinned data of the phase-folded light curve. These improvements yield a ~10 % higher detection efficiency (and similar false alarm rates) compared to BLS. The higher detection efficiency of our freely available Python implementation comes at the cost of higher computational load, which we partly compensate by applying an optimized period sampling and transit duration sampling, constrained to the physically plausible range. A typical Kepler K2 light curve, worth of 90 d of observations at a cadence of 30 min, can be searched with TLS in 10 seconds real time on a standard laptop computer, just as with BLS.

image

Installation

The stable version can be installed via pip: pip install transitleastsquares

To get the latest version, use

git clone https://github.com/hippke/tls
cd tls
python setup.py install

Dependencies: Python 3, SciPy, NumPy, numba, batman, tqdm, optional: argparse (for the command line version), astroquery (for LD and stellar density priors from Kepler K1, K2, and TESS).

Getting started

Here is a short animation of a real search for planets in Kepler K2 data. For more examples, have a look at the tutorials and the documentation.

image

Attribution

Please cite Hippke & Heller (2019, A&A accepted) if you find this code useful in your research. The BibTeX entry for the paper is:

@ARTICLE{2019arXiv190102015H,
       author = {{Hippke}, Michael and {Heller}, Ren{\'e}},
        title = "{Transit Least Squares: An optimized transit detection algorithm to search for periodic transits of small planets}",
      journal = {arXiv e-prints},
     keywords = {Astrophysics - Earth and Planetary Astrophysics, Astrophysics - Instrumentation and Methods for Astrophysics},
         year = 2019,
        month = Jan,
          eid = {arXiv:1901.02015},
        pages = {arXiv:1901.02015},
archivePrefix = {arXiv},
       eprint = {1901.02015},
 primaryClass = {astro-ph.EP},
       adsurl = {https://ui.adsabs.harvard.edu/\#abs/2019arXiv190102015H},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Contributing Code, Bugfixes, or Feedback

We welcome and encourage contributions. If you have any trouble, open an issue.

Copyright 2019 Michael Hippke & René Heller.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

transitleastsquares-1.0.16.tar.gz (42.1 kB view details)

Uploaded Source

Built Distribution

transitleastsquares-1.0.16-py3-none-any.whl (42.5 kB view details)

Uploaded Python 3

File details

Details for the file transitleastsquares-1.0.16.tar.gz.

File metadata

  • Download URL: transitleastsquares-1.0.16.tar.gz
  • Upload date:
  • Size: 42.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.2

File hashes

Hashes for transitleastsquares-1.0.16.tar.gz
Algorithm Hash digest
SHA256 6e9d4fe5bf7aaccbd8d299dac479c1c6b3e869afb50f40bef4356bb7ce85eae1
MD5 b2356092ebb7c9f5c30e591c5ee529fd
BLAKE2b-256 85739f0b7ce708e0313bb9f861a84d140042171633809059dee3846f6411281c

See more details on using hashes here.

File details

Details for the file transitleastsquares-1.0.16-py3-none-any.whl.

File metadata

  • Download URL: transitleastsquares-1.0.16-py3-none-any.whl
  • Upload date:
  • Size: 42.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.2

File hashes

Hashes for transitleastsquares-1.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 f53ffdc9db5d79d3817f80e324f8b6c5b4d9665f20be0f06e0c9b3a81e1af43d
MD5 54c557d27c857584ef3237c41e845809
BLAKE2b-256 f923b27720dadc11c89001ba4beca38fa27c92c7cc7b244c1f3ec083cc2a0fce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page