Skip to main content

An optimized transit-fitting algorithm to search for periodic transits of small planets

Project description

Logo

An optimized transit-fitting algorithm to search for periodic transits of small planets

Image Image Image Image Image Image

Motivation

We present a new method to detect planetary transits from time-series photometry, the Transit Least Squares (TLS) algorithm. While the commonly used Box Least Squares (BLS, Kovács et al. 2002) algorithm searches for rectangular signals in stellar light curves, TLS searches for transit-like features with stellar limb-darkening and including the effects of planetary ingress and egress. Moreover, TLS analyses the entire, unbinned data of the phase-folded light curve. These improvements yield a ~10 % higher detection efficiency (and similar false alarm rates) compared to BLS. The higher detection efficiency of our freely available Python implementation comes at the cost of higher computational load, which we partly compensate by applying an optimized period sampling and transit duration sampling, constrained to the physically plausible range. A typical Kepler K2 light curve, worth of 90 d of observations at a cadence of 30 min, can be searched with TLS in 10 seconds real time on a standard laptop computer, just as with BLS.

image

Installation

TLS can be installed conveniently using: pip install transitleastsquares

If you have multiple versions of Python and pip on your machine, try: pip3 install transitleastsquares

The latest version can be pulled from github::

git clone https://github.com/hippke/tls.git
cd tls
python setup.py install

If the command python does not point to Python 3 on your machine, you can try to replace the last line with python3 setup.py install. If you don't have git on your machine, you can find installation instructions here. TLS also runs on Python 2, but without multi-threading.

Dependencies: Python 3, NumPy, numba, batman-package, tqdm, optional: argparse (for the command line version), astroquery (for LD and stellar density priors from Kepler K1, K2, and TESS).

If you have trouble installing, please open an issue.

Getting started

Here is a short animation of a real search for planets in Kepler K2 data. For more examples, have a look at the tutorials and the documentation.

image

Attribution

Please cite Hippke & Heller (2019, A&A 623, A39) if you find this code useful in your research. The BibTeX entry for the paper is:

@ARTICLE{2019A&A...623A..39H,
       author = {{Hippke}, Michael and {Heller}, Ren{\'e}},
        title = "{Optimized transit detection algorithm to search for periodic transits of small planets}",
      journal = {\aap},
         year = "2019",
        month = "Mar",
       volume = {623},
          eid = {A39},
        pages = {A39},
          doi = {10.1051/0004-6361/201834672},
archivePrefix = {arXiv},
       eprint = {1901.02015},
 primaryClass = {astro-ph.EP},
       adsurl = {https://ui.adsabs.harvard.edu/\#abs/2019A&A...623A..39H},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Contributing Code, Bugfixes, or Feedback

We welcome and encourage contributions. If you have any trouble, open an issue.

Copyright 2019 Michael Hippke & René Heller.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

transitleastsquares-1.0.29.tar.gz (46.1 kB view details)

Uploaded Source

Built Distribution

transitleastsquares-1.0.29-py3-none-any.whl (47.4 kB view details)

Uploaded Python 3

File details

Details for the file transitleastsquares-1.0.29.tar.gz.

File metadata

  • Download URL: transitleastsquares-1.0.29.tar.gz
  • Upload date:
  • Size: 46.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for transitleastsquares-1.0.29.tar.gz
Algorithm Hash digest
SHA256 55bd8cb2cd38a7e2bf4a5dc497017035850dbcabf70a64b690082e773d7bfe10
MD5 1fe656b062f0ca2e5ba6548c64b7c767
BLAKE2b-256 1ea0eab2ebf371a2a28fe7adbea63245199f6b4a25d7cacf45521ac5aa0d691d

See more details on using hashes here.

File details

Details for the file transitleastsquares-1.0.29-py3-none-any.whl.

File metadata

  • Download URL: transitleastsquares-1.0.29-py3-none-any.whl
  • Upload date:
  • Size: 47.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for transitleastsquares-1.0.29-py3-none-any.whl
Algorithm Hash digest
SHA256 f95cdc08e6fa420d2e84698cd9a042deb585e55c5d1476d172cecf149fb94580
MD5 8dfd518a90d4bbe80f94bb20d094fe8a
BLAKE2b-256 b6e60e2b1448c5549eddba0ac881ef1470056b4d30318d1e4d2059342fc35f65

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page