Skip to main content

Translation Canvas - A tool for evaluating and visualizing machine translation models

Project description

Translation Canvas

PyPI version License: MIT

Overview

Translation Canvas is a Python package designed for in-depth analysis and visualization of machine translation (MT) model outputs. It facilitates both system-level and instance-level evaluations, helping researchers identify, analyze, and comprehend the strengths and weaknesses of translation models.

The tool integrates multiple evaluation metrics, including BLEU, COMET, and InstructScore, to provide a comprehensive view of translation quality. Moreover, it offers detailed natural language explanations for identified errors, powered by InstructScore, and presents the results in an intuitive and interactive dashboard.

Why Translation Canvas?

With the rapid development of machine translation systems, traditional evaluation tools like COMET and SacreBLEU often fall short in providing fine-grained insights. Translation Canvas bridges this gap by offering:

Instance-level Error Analysis: Highlight specific errors in translation instances and explain their nature using natural language descriptions.

System-level Insights: Aggregate error analysis to identify common pitfalls and strengths across entire datasets.

Visual Comparisons: Interactive dashboard for comparing the performance of different models on a granular level.

Installation

You can easily install Translation Canvas via pip:

pip install translation-canvas

After installation, run a one-time setup script to configure necessary dependencies:

translation-canvas-setup

For the latest development version, you can install directly from the GitHub repository:

pip install git+https://github.com/ChinDandekar/translation_canvas

Features

Compare Instances

Error Analysis

Translation Canvas highlights errors at the instance level using color-coded spans. Hovering over these spans reveals natural language explanations, making it easier to understand the type of errors encountered.

Comparison and Search

Translation Canvas allows users to compare multiple models simulatneously. It also provides a powerful search feature to users, allowing them to filter instancs by text, error type, error scale and error explanation

System-level Dashboard

Compare Systems

Translation Canvas provides a system-level dashboard to understand model performance at a system level.

Instance Submission

Submit Workflow

Submit source-prediction-reference triplets through the user interface or by directly uploading files. The tool will process these instances, evaluate them using the integrated metrics, and provide detailed feedback.

Usage

Translation Canvas operates as a web application, running in your browser. To start the application:

translation-canvas-start

By default, the app will be available at http://127.0.0.1:5000.

To run the app on a different port:

translation-canvas-start --port your-port

Port Forwarding

If you are running Translation Canvas on a remote server via SSH, use port forwarding to access the app:

ssh -L your-port:127.0.0.1:5000 username@yourserver.com

Evaluation and Feedback

Translation Canvas has been tested with machine translation experts, who found it to be both effective and user-friendly. The tool has shown to be particularly useful in pinpointing subtle errors that might be overlooked by traditional evaluation methods.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

translation_canvas-1.0.2.tar.gz (1.8 MB view details)

Uploaded Source

Built Distribution

translation_canvas-1.0.2-py3-none-any.whl (1.8 MB view details)

Uploaded Python 3

File details

Details for the file translation_canvas-1.0.2.tar.gz.

File metadata

  • Download URL: translation_canvas-1.0.2.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.2

File hashes

Hashes for translation_canvas-1.0.2.tar.gz
Algorithm Hash digest
SHA256 0e8ddb232ea1e96b9564486e5db9f7ded5138ab0887495c0caa453f5a1fd0c50
MD5 d34ee007b21fb9e942353a5625cf3c51
BLAKE2b-256 84153aec4da5dd5eb73875935c0322852222be5f2f24ace66d2cbb1b2e493021

See more details on using hashes here.

File details

Details for the file translation_canvas-1.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for translation_canvas-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a4c4c6ed4b12b40dea8d1a3fde2d15efda119b97242a23f9efe61da2cd78c3ee
MD5 682e8e47ce9c93d80f38322b89e853f1
BLAKE2b-256 2a3a52605406a01a9c43ccd15b48ddcd3fc088c082f178bfb19148614b057fac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page