Make your Python code fly at transonic speeds!
Project description
Documentation: https://transonic.readthedocs.io
Transonic is a pure Python package (requiring Python >= 3.6) to easily accelerate modern Python-Numpy code with different accelerators (like Cython, Pythran, Numba, Cupy, PyTorch, Uarray, etc…) opportunistically (i.e. if/when they are available).
The accelerators are not hard dependencies of Transonic: Python codes using Transonic run fine without any accelerators installed (of course without speedup)!
The long-term project
Transonic targets Python end-users and library developers.
It is based on the following principles:
We’d like to write scientific / computing applications / libraries with pythonic, readable, modern code (Python >= 3.6).
In some cases, Python-Numpy is too slow. However, there are tools to accelerate such Python-Numpy code which lead to very good performances!
Let’s try to write universal code which express what we want to compute and not the special hacks we want to use to make it fast. We just need nice ways to express that a function, a method or a block of code has to be accelerated (and how it has to be accelerated). We’d like to be able to do this in a pythonic way, with decorators and context managers.
There are many tools to accelerate Python-Numpy code! Let’s avoid writting code specialized for only one of these tools.
Let’s try to keep the code as it would be written without acceleration. For example, with Transonic, we are able to accelerate (simple) methods of classes even though some accelerators don’t support classes.
Let’s accelerate/compile only what needs to be accelerated, i.e. only the bottlenecks. Python and its interpreters are good for the rest. In most cases, the benefice of writting big compiled extensions (with Cython or in other languages) is negligible.
Adding types is sometimes necessary. In modern Python, we have nice syntaxes for type annotations! Let’s use them.
Ahead-of-time (AOT) and just-in-time (JIT) compilation modes are both useful. We’d like to have a nice, simple and unified API for these two modes.
AOT is useful to be able to distribute compiled packages and in some cases, more optimizations can be applied.
JIT is simpler to use (no need for type annotations) and optimizations can be more hardware specific.
Note that with Transonic, AOT compilers (Pythran and Cython) can be used as JIT compilers (with a cache mechanism).
To summarize, a strategy to quickly develop a very efficient scientific application/library with Python could be:
Use modern Python coding, standard Numpy/Scipy for the computations and all the cool libraries you want.
Profile your applications on real cases, detect the bottlenecks and apply standard optimizations with Numpy.
Add few lines of Transonic to compile the hot spots.
What we have now
We start to have a good API to accelerate Python-Numpy code (functions, methods and blocks of code).
The default Transonic backend uses Pythran and works well. Here, we explain why Pythran is so great for Python users and why Transonic is great for Pythran users
There is also an alpha version of the Cython backend.
Installation and configuration
pip install transonic
Transonic is sensible to environment variables:
TRANSONIC_DIR
can be set to control where the cached files are saved.TRANSONIC_DEBUG
triggers a verbose mode.TRANSONIC_COMPILE_AT_IMPORT
can be set to enable a mode for which Transonic compiles at import time the Pythran file associated with the imported module. This behavior can also be triggered programmatically by using the functionset_compile_at_import
.TRANSONIC_NO_REPLACE
can be set to disable all code replacements. This is useful to compare execution times and when measuring code coverage.TRANSONIC_COMPILE_JIT
can be set to false to disable the compilation of jited functions. This can be useful for unittests.TRANSONIC_BACKEND
to choose between the supported backends, i.e. now only “pythran” (quite robust) and “cython” (prototype). The Numba backend should soon be available.
A short tour of Transonic syntaxes
Decorator boost
and command # transonic def
import h5py
import mpi4py
from transonic import boost
# transonic def myfunc(int, float)
@boost
def myfunc(a, b):
return a * b
...
Most of this code looks familiar to Pythran users. The differences:
One can use (for example) h5py and mpi4py (of course not in the Pythran functions).
# transonic def
instead of# pythran export
.A tiny bit of Python… The decorator
@boost
replaces the Python function by the compiled function if Transonic has been used to produced the associated Pythran/Cython/Numba file.
With type annotations
The previous example can be rewritten without # transonic def
. It is
the recommended syntaxes for ahead-of-time compilation:
import numpy as np
import h5py
from transonic import boost
@boost
def myfunc(a: float, d: int):
return a * np.ones(d * [10])
...
Nice (shorter and clearer than with the Pythran command) but very limited (only
simple types and only one signature)… So one can also elegantly define many
signatures using in Transonic type variables and/or Pythran types in strings
(see these examples).
Moreover, it is possible to mix type hints and # transonic def
commands.
More information when targetting Cython
Cython needs to know the types of local variables to really speedup the computations. Transonic is able to write fast Cython from such code:
from transonic import boost
@boost
def mysum(arr: "float[:]"):
i: int
n: int = arr.shape[0]
result: float = 0.0
for i in range(n):
result += arr[i]
return result
Just-In-Time compilation
With Transonic, one can use the Ahead-Of-Time compilers Pythran and Cython in a Just-In-Time mode. It is really the easiest way to speedup a function with Pythran, just by adding a decorator! And it also works in notebooks!
import numpy as np
from transonic import jit
def func0(a, b):
return a + b
@jit
def func1(a, b):
return np.exp(a) * b * func0(a, b)
Note that the @jit
decorator takes into account type hints (see
the example in the documentation).
Implementation details for just-in-time compilation: A Pythran file is
produced for each “JITed” function (function decorated with @jit
). The
file is compiled at the first call of the function and the compiled version is
used as soon as it is ready. The warmup can be quite long but the compiled
version is saved and can be reused (without warmup!) by another process.
Define accelerated blocks
Transonic blocks can be used with classes and more generally in functions with lines that cannot be compiled by Pythran.
from transonic import Transonic
ts = Transonic()
class MyClass:
...
def func(self, n):
a, b = self.something_that_cannot_be_pythranized()
if ts.is_transpiled:
result = ts.use_block("name_block")
else:
# transonic block (
# float a, b;
# int n
# )
# transonic block (
# complex a, b;
# int n
# )
result = a**n + b**n
return self.another_func_that_cannot_be_pythranized(result)
For blocks, we need a little bit more of Python.
At import time, we have
ts = Transonic()
, which detects which Pythran module should be used and imports it. This is done at import time since we want to be very fast at run time.In the function, we define a block with three lines of Python and special Pythran annotations (
# transonic block
). The 3 lines of Python are used (i) at run time to choose between the two branches (is_transpiled
or not) and (ii) at compile time to detect the blocks.
Note that the annotations in the command # transonic block
are
different (and somehow easier to write) than in the standard command #
pythran export
.
Python classes: @boost
and @jit
for methods
For simple methods only using attributes, we can write:
import numpy as np
from transonic import boost
A = "float[:]"
@boost
class MyClass:
arr0: A
arr1: A
def __init__(self, n):
self.arr0 = np.zeros(n)
self.arr1 = np.zeros(n)
@boost
def compute(self, alpha: float):
return (self.arr0 + self.arr1).mean() ** alpha
More examples of how to use Transonic for Object Oriented Programing are given here.
Make the Pythran/Cython/Numba files
There is a command-line tool transonic
which makes the associated
Pythran/Cython/Numba files from Python files with annotations and transonic
code. By default and if the Python compiler is available, the files are
compiled.
There is also a function make_backend_files
that can be used in a
setup.py like this:
from pathlib import Path
from transonic.dist import make_backend_files
here = Path(__file__).parent.absolute()
paths = ["fluidsim/base/time_stepping/pseudo_spect.py"]
make_backend_files([here / path for path in paths])
Note that make_backend_files
does not compile the backend files. The
compilation has to be done after the call of this function (see for example how
it is done in the example package pack_using_transonic
or in fluidsim’s setup.py).
License
Transonic is distributed under the CeCILL-B License, a BSD compatible french license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for transonic-0.3.0.post0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1acfb8fb3e53a5c99047fe0720f4be781cd7bb691963b6e1ea1502595924f622 |
|
MD5 | 07e2de45499446880b0ca69945467735 |
|
BLAKE2b-256 | 368d0d284e15e4f161475c116b9b2351e81ea3178d0eff24d900e19ef41e9f51 |