Skip to main content

Make images with transparent background

Project description

Transparent Background

This is a background removing tool powered by InSPyReNet (ACCV 2022). You can easily remove background from the image or video or bunch of other stuffs when you can make the background transparent!

Image Video Webcam

:inbox_tray: Installation

Dependencies (python packages)

package version (>=)
pytorch 1.7.1
torchvision 0.8.2
opencv-python 4.6.0.66
timm 0.6.11
tqdm 4.64.1
kornia 0.5.4
gdown 4.5.4
pyvirtualcam 0.6.0

Note: If you have any problem with pyvirtualcam, please visit their github repository or pypi homepage. Due to the backend workflow for Windows and macOS, we only support Linux for webcam input.

Dependencies (webcam input)

We basically follow the virtual camera settings from pyvirtualcam. If you do not choose to install virtual camera, it will visualize real-time output with cv2.imshow.

A. Linux (v4l2loopback)

# Install v4l2loopback for webcam relay
$ git clone https://github.com/umlaeute/v4l2loopback.git && cd v4l2loopback
$ make && sudo make install
$ sudo depmod -a

# Create virtual webcam
$ sudo modprobe v4l2loopback devices=1

Note: If you have any problem with installing v4l2loopback, please visit their github repository.

B. Windows (OBS)

Install OBS virtual camera from install OBS.

C. macOS (OBS) [not stable]

Follow the steps below.

  • Install OBS.
  • Start OBS.
  • Click "Start Virtual Camera" (bottom right), then "Stop Virtual Camera".
  • Close OBS.

Install transperent-background

# via pypi
$ pip install transparent-background

# via github
$ pip install git+https://github.com/plemeri/transparent-background.git

# locally
$ pip install .

:pencil2: Usage

:computer: Command Line

# for apple silicon mps backend, use "PYTORCH_ENABLE_MPS_FALLBACK=1" before the command (requires torch >= 1.13)
$ transparent-background --source [SOURCE] --dest [DEST] --type [TYPE] --ckpt [CKPT] (--fast) (--jit)
  • --source [SOURCE]: Specify your data in this argument.
    • Single image - image.png
    • Folder containing images - path/to/img/folder
    • Single video - video.mp4
    • Folder containing videos - path/to/vid/folder
    • Integer for webcam address - 0 (e.g., if your webcam is at /dev/video0.)
  • --dest [DEST] (optional): Specify your destination folder. Default location is current directory.
  • --type [TYPE] (optional): Choose between rgba, map green, blur, overlay, and another image file. Default is rgba.
    • rgba will generate RGBA output regarding saliency score as an alpha map. Note that this will not work for video and webcam input.
    • map will output saliency map only.
    • green will change the background with green screen.
    • blur will blur the background.
    • overlay will cover the salient object with translucent green color, and highlight the edges.
    • Another image file (e.g., samples/backgroud.png) will be used as a background, and the object will be overlapped on it.
  • --ckpt [CKPT] (optional): Use other checkpoint file. Default is trained with composite dataset and will be automatically downloaded if not available. Please refer to Model Zoo from InSPyReNet for available pre-trained checkpoints.
  • --fast (optional): Fast mode. If specified, it will use low-resolution input and model trained with LR scale. May decrease performance but reduces inference time and gpu memory usage.
  • --jit (optional): Torchscript mode. If specified, it will trace model with pytorch built-in torchscript JIT compiler. May cause delay in initialization, but reduces inference time and gpu memory usage.

:crystal_ball: Python API

  • Usage Example
import cv2

from PIL import Image
from transparent_background import Remover

# Load model
remover = Remover() # default setting
remover = Remover(fast=True, jit=True, device='cuda:0', ckpt='~/latest.pth') # custom setting

# Usage for image
img = Image.open('samples/aeroplane.jpg').convert('RGB') # read image

out = remover.process(img) # default setting - transparent background
out = remover.process(img, type='rgba') # same as above
out = remover.process(img, type='map') # object map only
out = remover.process(img, type='green') # image matting - green screen
out = remover.process(img, type='blur') # blur background
out = remover.process(img, type='overlay') # overlay object map onto the image
out = remover.process(img, type='samples/background.jpg') # use another image as a background

Image.fromarray(out).save('output.png') # save result

# Usage for video
cap = cv2.VideoCapture('samples/b5.mp4') # video reader for input
fps = cap.get(cv2.CAP_PROP_FPS)

writer = None

while cap.isOpened():
    ret, frame = cap.read() # read video

    if ret is False:
        break
        
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 
    img = Image.fromarray(frame).convert('RGB')

    if writer is None:
        writer = cv2.VideoWriter('output.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, img.size) # video writer for output

    out = remover.process(img, type='map') # same as image, except for 'rgba' which is not for video.
    writer.write(cv2.cvtColor(out, cv2.COLOR_BGR2RGB))

cap.release()
writer.release()

:outbox_tray: Uninstall

pip uninstall transparent-background

:page_facing_up: Licence

See LICENCE for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

transparent-background-1.2.2.tar.gz (22.7 kB view details)

Uploaded Source

Built Distribution

transparent_background-1.2.2-py3-none-any.whl (23.4 kB view details)

Uploaded Python 3

File details

Details for the file transparent-background-1.2.2.tar.gz.

File metadata

File hashes

Hashes for transparent-background-1.2.2.tar.gz
Algorithm Hash digest
SHA256 8d53d18e939ccf6a40a9ce80f079797e3cc8ab1870e08d3f95c041136366aac7
MD5 0a12f172292ce1d93af3abab8994e93b
BLAKE2b-256 333d243a4a843dedaa8e08d8e4b90ec95a45153f139bb4390158d516169747d1

See more details on using hashes here.

File details

Details for the file transparent_background-1.2.2-py3-none-any.whl.

File metadata

File hashes

Hashes for transparent_background-1.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 b2f5be93c44a5f042a4eb6ea26be681a672616fce82f96588906256f03f2e876
MD5 44aa4d358ac06694f5e886e8ed5500c5
BLAKE2b-256 4ec1a6a536ee12e85f661fa77f568b7e7dd8eaeaa1e19d9488d61fed8c188e77

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page