Skip to main content

A flexible tabular prediction model that handles variable-column input tables.

Project description

TransTab: A flexible transferable tabular learning framework [arxiv]

PyPI version Documentation Status License GitHub Repo stars GitHub Repo forks Downloads Downloads

Document is available at https://transtab.readthedocs.io/en/latest/index.html.

Paper is available at https://arxiv.org/pdf/2205.09328.pdf.

5 min blog to understand TransTab at realsunlab.medium.com!

News!

  • [05/04/23] Check the version 0.0.5 of TransTab!

  • [01/04/23] Check the version 0.0.3 of TransTab!

  • [12/03/22] Check out our [blog] for a quick understanding of TransTab!

  • [08/31/22] 0.0.2 Support encode tabular inputs into embeddings directly. An example is provided here. Several bugs are fixed.

TODO

  • Table embedding.

  • Add support to direct process table with missing values.

  • Add regression support.

Features

This repository provides the python package transtab for flexible tabular prediction model. The basic usage of transtab can be done in a couple of lines!

import transtab

# load dataset by specifying dataset name
allset, trainset, valset, testset, cat_cols, num_cols, bin_cols \
     = transtab.load_data('credit-g')

# build classifier
model = transtab.build_classifier(cat_cols, num_cols, bin_cols)

# start training
transtab.train(model, trainset, valset, **training_arguments)

# make predictions, df_x is a pd.DataFrame with shape (n, d)
# return the predictions ypred with shape (n, 1) if binary classification;
# (n, n_class) if multiclass classification.
ypred = transtab.predict(model, df_x)

It's easy, isn't it?

How to install

First, download the right pytorch version following the guide on https://pytorch.org/get-started/locally/.

Then try to install from pypi directly:

pip install transtab

or

pip install git+https://github.com/RyanWangZf/transtab.git

Please refer to for more guidance on installation and troubleshooting.

Transfer learning across tables

A novel feature of transtab is its ability to learn from multiple distinct tables. It is easy to trigger the training like

# load the pretrained transtab model
model = transtab.build_classifier(checkpoint='./ckpt')

# load a new tabular dataset
allset, trainset, valset, testset, cat_cols, num_cols, bin_cols \
     = transtab.load_data('credit-approval')

# update categorical/numerical/binary column map of the loaded model
model.update({'cat':cat_cols,'num':num_cols,'bin':bin_cols})

# then we just trigger the training on the new data
transtab.train(model, trainset, valset, **training_arguments)

Contrastive pretraining on multiple tables

We can also conduct contrastive pretraining on multiple distinct tables like

# load from multiple tabular datasets
dataname_list = ['credit-g', 'credit-approval']
allset, trainset, valset, testset, cat_cols, num_cols, bin_cols \
     = transtab.load_data(dataname_list)

# build contrastive learner, set supervised=True for supervised VPCL
model, collate_fn = transtab.build_contrastive_learner(
    cat_cols, num_cols, bin_cols, supervised=True)

# start contrastive pretraining training
transtab.train(model, trainset, valset, collate_fn=collate_fn, **training_arguments)

Citation

If you find this package useful, please consider citing the following paper:

@inproceedings{wang2022transtab,
  title={TransTab: Learning Transferable Tabular Transformers Across Tables},
  author={Wang, Zifeng and Sun, Jimeng},
  booktitle={Advances in Neural Information Processing Systems},
  year={2022}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

transtab-0.0.5.tar.gz (28.1 kB view details)

Uploaded Source

Built Distribution

transtab-0.0.5-py3-none-any.whl (29.4 kB view details)

Uploaded Python 3

File details

Details for the file transtab-0.0.5.tar.gz.

File metadata

  • Download URL: transtab-0.0.5.tar.gz
  • Upload date:
  • Size: 28.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for transtab-0.0.5.tar.gz
Algorithm Hash digest
SHA256 c934a80bd942c94b9fa3bd2f609b9d3ab397f02226fcea6c01d259a57cacc1db
MD5 d521ba2038c809a8b020bcd2f78ec501
BLAKE2b-256 7552eafe158c56a2caadaad72088e68a21e9e39f3716c06c6396c62fb6fd918f

See more details on using hashes here.

File details

Details for the file transtab-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: transtab-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 29.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for transtab-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 7e9a299da23a32e0dafa5e652293427c5ffcdecafb8cea13fbfbc0da90623f3d
MD5 79d64c9a5cf9797baf6c2a036003f975
BLAKE2b-256 7f3fa6def0a22d71edc031225c101970a7481362ea11b6ee8a3c74cd16d70ecd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page