A package to help create and deploy Translator Reasoner APIs (TRAPI) from any prediction model exposed as a regular python function.
Project description
A package to help create and deploy Translator Reasoner APIs (TRAPI) from any prediction model exposed as a regular python function.
📦️ Installation
This package requires Python >=3.7, simply install it with:
pip install trapi-predict-kit
To also include uvicorn/gunicorn for deployment:
pip install trapi-predict-kit[web]
🪄 Usage
🔮 Define the prediction endpoint
The trapi_predict_kit
package provides a decorator @trapi_predict
to annotate your functions that generate predictions. Predictions generated from functions decorated with @trapi_predict
can easily be imported in the Translator OpenPredict API, exposed as an API endpoint to get predictions from the web, and queried through the Translator Reasoner API (TRAPI).
The annotated predict functions are expected to take 2 input arguments: the input ID (string) and options for the prediction (dictionary). And it should return a dictionary with a list of predicted associated entities hits. Here is an example:
from trapi_predict_kit import trapi_predict, PredictOptions, PredictOutput
@trapi_predict(path='/predict',
name="Get predicted targets for a given entity",
description="Return the predicted targets for a given entity: drug (DrugBank ID) or disease (OMIM ID), with confidence scores.",
edges=[
{
'subject': 'biolink:Drug',
'predicate': 'biolink:treats',
'object': 'biolink:Disease',
},
{
'subject': 'biolink:Disease',
'predicate': 'biolink:treated_by',
'object': 'biolink:Drug',
},
],
nodes={
"biolink:Disease": {
"id_prefixes": [
"OMIM"
]
},
"biolink:Drug": {
"id_prefixes": [
"DRUGBANK"
]
}
}
)
def get_predictions(
input_id: str, options: PredictOptions
) -> PredictOutput:
# Add the code the load the model and get predictions here
predictions = {
"hits": [
{
"id": "DB00001",
"type": "biolink:Drug",
"score": 0.12345,
"label": "Leipirudin",
}
],
"count": 1,
}
return predictions
Define the API
You will need to instantiate a TRAPI
class to deploy a Translator Reasoner API serving a list of prediction functions that have been decorated with @trapi_predict
. For example:
import logging
from trapi_predict_kit.config import settings
from trapi_predict_kit import TRAPI
# TODO: change to your module name
from my_model.predict import get_predictions
log_level = logging.ERROR
if settings.DEV_MODE:
log_level = logging.INFO
logging.basicConfig(level=log_level)
predict_endpoints = [ get_predictions ]
openapi_info = {
"contact": {
"name": "Firstname Lastname",
"email": "email@example.com",
# "x-id": "https://orcid.org/0000-0000-0000-0000",
"x-role": "responsible developer",
},
"license": {
"name": "MIT license",
"url": "https://opensource.org/licenses/MIT",
},
"termsOfService": 'https://github.com/your-org-or-username/my-model/blob/main/LICENSE.txt',
"x-translator": {
"component": 'KP',
# TODO: update the Translator team to yours
"team": [ "Clinical Data Provider" ],
"biolink-version": settings.BIOLINK_VERSION,
"infores": 'infores:openpredict',
"externalDocs": {
"description": "The values for component and team are restricted according to this external JSON schema. See schema and examples at url",
"url": "https://github.com/NCATSTranslator/translator_extensions/blob/production/x-translator/",
},
},
"x-trapi": {
"version": settings.TRAPI_VERSION,
"asyncquery": False,
"operations": [
"lookup",
],
"externalDocs": {
"description": "The values for version are restricted according to the regex in this external JSON schema. See schema and examples at url",
"url": "https://github.com/NCATSTranslator/translator_extensions/blob/production/x-trapi/",
},
}
}
servers = []
if settings.VIRTUAL_HOST:
servers = [
{
"url": f"https://{settings.VIRTUAL_HOST}",
"description": 'TRAPI ITRB Production Server',
"x-maturity": 'production'
},
]
app = TRAPI(
predict_endpoints=predict_endpoints,
servers=servers,
info=openapi_info,
title='My model TRAPI',
version='1.0.0',
openapi_version='3.0.1',
description="""Machine learning models to produce predictions that can be integrated to Translator Reasoner APIs.
\n\nService supported by the [NCATS Translator project](https://ncats.nih.gov/translator/about)""",
dev_mode=True,
)
Deploy the API
Change trapi.main
to your module path in the command before running it:
uvicorn trapi.main:app --port 8808 --reload
🧑💻 Development setup
The final section of the README is for if you want to run the package in development, and get involved by making a code contribution.
📥️ Clone
Clone the repository:
git clone https://github.com/MaastrichtU-IDS/trapi-predict-kit
cd trapi-predict-kit
🐣 Install dependencies
Install Hatch, this will automatically handle virtual environments and make sure all dependencies are installed when you run a script in the project:
pip install --upgrade hatch
Install the dependencies in a local virtual environment:
hatch -v env create
To test it locally with python 3.7 use mamba or conda:
mamba create -n py37 python=3.7
🧑💻 Develop
Run the API for development defined in tests/dev.py
:
hatch run api
☑️ Run tests
Make sure the existing tests still work by running pytest
. Note that any pull requests to the fairworkflows repository on github will automatically trigger running of the test suite;
hatch run test
To display all logs when debugging:
hatch run test -s
🧹 Code formatting
The code will be automatically formatted when you commit your changes using pre-commit
. But you can also run the script to format the code yourself:
hatch run fmt
Check the code for errors, and if it is in accordance with the PEP8 style guide, by running flake8
and mypy
:
hatch run check
♻️ Reset the environment
In case you are facing issues with dependencies not updating properly you can easily reset the virtual environment with:
hatch env prune
🏷️ New release process
The deployment of new releases is done automatically by a GitHub Action workflow when a new release is created on GitHub. To release a new version:
- Make sure the
PYPI_TOKEN
secret has been defined in the GitHub repository (in Settings > Secrets > Actions). You can get an API token from PyPI at pypi.org/manage/account. - Increment the
version
number in thepyproject.toml
file in the root folder of the repository. - Create a new release on GitHub, which will automatically trigger the publish workflow, and publish the new release to PyPI.
You can also manually trigger the workflow from the Actions tab in your GitHub repository webpage.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for trapi_predict_kit-0.1.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2dda9c25678b7059a9e99390d55aeb7af7fbfa814a40a60ee2256015636a9cd8 |
|
MD5 | 1787bb998650020540bdd08f1a22defd |
|
BLAKE2b-256 | d522e2febbb1e6d6885beddc51ced2e35825bb8bb9b4305b53b1a249a846c47a |